

Nitrate contamination of shallow groundwater in Alberta

Bernhard Mayer and

Pauline Humez, Mike Nightingale, Isabel Plata

Applied Geochemistry group

Department of Earth, Energy and Environment

University of Calgary

September 13, 2023

Introduction

- Providing sufficient amounts of high-quality water is of key importance for Alberta's economic future development.
- In regions of Alberta where surface water is fully allocated, the question arises to what extent groundwater can be used to supplement the availability of high-quality water to sustain current and future economic growth.
- Groundwater also frequently contributes to the water balance of lakes and may be a source of nutrients such as nitrate.

Figure: Water budget components of a flow-through lake (from: Woessner, 2020)

Introduction

- Knowledge about the quality of Alberta's groundwater is still in its infancy
- Key questions include:
 - what natural processes control groundwater quality?
 - are there regional patterns?
 - are there any noticeable anthropogenic impacts on groundwater quality (e.g., nitrate)?
- If so, do nutrients in groundwater affect surface waters including lakes?

Figure: Lake in British Columbia affected by excess nutrient loading

- To summarize the current understanding of groundwater quality in Alberta on a province-wide scale
- Review the occurrence of nitrate in Alberta groundwater
- Determine the sources of groundwater nitrate
- Evaluate the fate of nitrate in groundwater dependent on redox environment

Figure: Groundwater sampling conducted by a team from Alberta Environment & Parks (AEP)

Groundwater Quality in Alberta Data Sources

 Groundwater samples for water quality assessment have been collected by various government programs including AHS, GOWN, BWWT, AWWID, AGI and others for several decades;

• We have amalgamated groundwater quality data from 5 major sources and conducted a rigorous QA/QC analysis

• Over 131,000 groundwater samples are represented in the unified data base

Figure: Number of groundwater quality Samples per township in unified database

Groundwater Quality in Alberta Parameters

Field Parameters:

Major cations:

Major anions:

Nutrients:

Minor and trace elements:

Dissolved & free gases:

temperature, pH, dissolved O_2 , (EC, ORP) Ca²⁺, Mg²⁺, Na⁺, K⁺ HCO₃⁻, SO₄²⁻, Cl⁻ NO₃⁻, NH₄⁺, PO₄³⁻

e.g., F, Mn, Fe, As, Se many others

methane (CH_4), ethane (C_2H_6) etc.

Stable isotope compositions water, DIC, nitrate, sulfate, methane

Age-dating

> 50 parameters per sample;
→ more than 6 million parameters

tritium, C-14, Kr-81: select samples only

> 130.000 samples passing
QA/QC tests (electroneutrality)

Groundwater Quality in Alberta Total Dissolved Solids (TDS)

TDS = sum of major cations (Ca^{2+} , Mg^{2+} , Na^+) and major anions (HCO_3^- , SO_4^{2-} , CI^-) measured in mg/L

Indicates **salinity** of the groundwater:

< 1000 mg/L freshwater: 65% 1000-4000 mg/L: 34% > 4,000 mg/L saline gw: 1%

Figure: Average TDS contents of groundwater versus average well depth per township

Groundwater Quality in Alberta Major groundwater types

Ca (Mg) – HCO₃ water type

→ carbonate dissolution
 → freshly recharged

Na – HCO₃ water type --> More evolved/older groundwater

Na – HCO₃/SO₄ water type → Evolved and mixed groundwater

Na – Cl water type --> Saline water type

Figure: Piper diagram showing key groundwater types

Groundwater Quality in Alberta Groundwater types and salinity trends

Groups	Dominant water- type	Average TDS (mg/L)	Percentage
Alkaline earth - HCO ₃	Ca-Mg-HCO ₃	418	15%
Na-HCO ₃	Na-HCO ₃	799	48%
Na- mixed anions	Na-HCO ₃ -SO ₄	1298	27%
Na-SO ₄	Na-SO ₄	2311	9%
Na-Cl	Na-Cl	3363	2%

Regional Groundwater Quality in Alberta Total dissolved solids (TDS)

groundwater

Figure: Regional map of average TDS contents in groundwater per township 10

Regional Groundwater Quality in Alberta Ca Na HCO₃⁻

Figure: Regional map of average Ca concentrations in groundwater per township Figure: Regional map of average Na concentrations in groundwater per township Figure: Regional map of average HCO₃⁻ concentrations in groundwater per township 11

UNIVERSITY OF

Regional Groundwater Quality in Alberta Nitrate

- Excessive nitrate is a concern in drinking water (e.g., health effects such as blue baby syndrome, among others)
- WHO and Health Canada require < 10 mg/L NO₃-N in drinking water (= maximum allowable concentration or MAC)
- Excessive nutrients including nitrate can cause eutrophication in surface waters
- Hypoxia (low oxygen) in coastal waters
 → fish kills

Alberta: Nitrate in Groundwater

 Reviewed circa 90,000 groundwater quality records

25000

20000

15000

0000

5000

0

0

Frequency

 In 65% of groundwater samples, nitrate is below the detection limit

80

100

 The maximum allowable concentration (MAC) of 10 mg/L for nitrate-N is exceeded in 3% of samples

60

40

20

Figure: Map of average NO₃-N concentrations in groundwater per township

Alberta: Nitrate in Groundwater vs. depth

- Elevated nitrate concentrations predominantly observed in:
 - shallow groundwater (<50 m)
 - areas with agricultural landuse
- How can we identify the sources of nitrate in groundwater?

Figure: Nitrate-N concentrations in Alberta groundwater versus well depth

Sources of Nitrate in Alberta Groundwater Potential Nitrate Sources

- Atmospheric deposition
- nitrification in soils

 $(N_{org} \rightarrow NO_{3}^{-})$

- synthetic fertilizers
- manure (e.g., from cattle)
- waste water effluents and
 - septic systems

Sources of Nitrate in Alberta Groundwater Stable Isotope Ratio Measurements

Isotopic composition by isotope ratio mass spectrometry

$$\delta^{15}N \ [\%_0] = \frac{({}^{15}N/{}^{14}N)_{sample} - ({}^{15}N/{}^{14}N)_{standard}}{({}^{15}N/{}^{14}N)_{standard}} \ x \ 1000$$

$$\delta^{18}O[\%_0] = \frac{({}^{18}O/{}^{16}O)_{sample} - ({}^{18}O/{}^{16}O)_{standard}}{({}^{18}O/{}^{16}O)_{standard}} \times 1000$$

Sources of Nitrate in Alberta Groundwater Isotopic Fingerprinting of Nitrate Sources

Figure: Isotopic composition of nitrate derived from different sources (from Kendall et al., 2007)

GOWN High-Quality Sampling Reveals sources and fate of nitrate

- Isotope analyses reveal that groundwater nitrate is frequently derived from manure
- In some cases, NO₃⁻ is derived from nitrification of soil organic N supplemented by urea and NH₄-based fertilizers
- Similar observations have been made in many other case studies in other countries or provinces

GOWN data 70 NO₂ 60 in precipitation 50 40 δ¹⁸Ο_{NO3} (‰) 30 Jenitrification 20 NO₂ fertilizer NH₄ in 10 fertilizer soil and rain Ω \circ -10 -20 -20 -10 30 40 50 60 80 70 10

Figure: Isotopic composition of groundwater nitrate in samples from Alberta's Groundwater Observation Network (GOWN)

δ¹⁵N_{NO3} (‰)

Sources of Nitrate in Alberta Groundwater

Key Observations

- where groundwater nitrate occurs in high concentrations, the nitrate seems to be derived from agricultural sources (often manure-derived)
- the majority of groundwater samples do not contain nitrate

Figure: Application of manure is solid and liquid forms

Groundwater Quality in Alberta Redox Zones & and the Redox Ladder

- As groundwater migrates away from the recharge zones, a systematic redox sequence is observed:
 - post-oxic zone
 - (dissolved oxygen is first consumed, then nitrate is "denitrified")
 - sulfidic zone (H₂S produced)

- methanic zone (CH₄ produced)

Figure: The redox ladder concept

Processes that Remove Nitrate from Groundwater

21

Figure: Groundwater redox zones

Conclusions

- Knowledge about aquifers in Alberta and the quality of the groundwater they contain is slowly emerging
- The chemical composition of groundwater is naturally evolving in space and time
- Anthropogenic impacts from agricultural activities are apparent in elevated concentrations of nitrate, often derived from manure
- Much of Alberta's groundwater is quite reducing; in these aquifers, denitrification is an effective nitrate removal process

Trans

GW

 To what extent groundwater (and its nutrients) impact lakes in Alberta needs to be evaluated on a case by case basis

Acknowledgements

Contact: bmayer@ucalgary.ca

ALBERTA A

Aberta Environment and Parks

Regional Groundwater Quality in Alberta Redox Zones & and the Redox Ladder

- As groundwater migrates away from the recharge zones, a systematic redox sequence is observed:
 - post-oxic zone
 - (dissolved oxygen is first consumed, then nitrate is "denitrified")
 - **sulfidic zone** (H₂S produced)

- methanic zone (CH₄ produced)

Figure: The redox ladder concept

Regional Groundwater Quality in Alberta Groundwater redox zones were classified

Figure 2: Redox zone delineations based on A) nitrate-sulfate-methane diagrams, and B) criteria used for assigning redox categories and probable dominant redox processes based on water chemistry threshold data.