Lake Salinity Levels & Eutrophication

Marilou B. Montemayor Alberta Lake Management Society Workshop

Chestermere, AB

Sept 30 – Oct 1, 2011

Outline

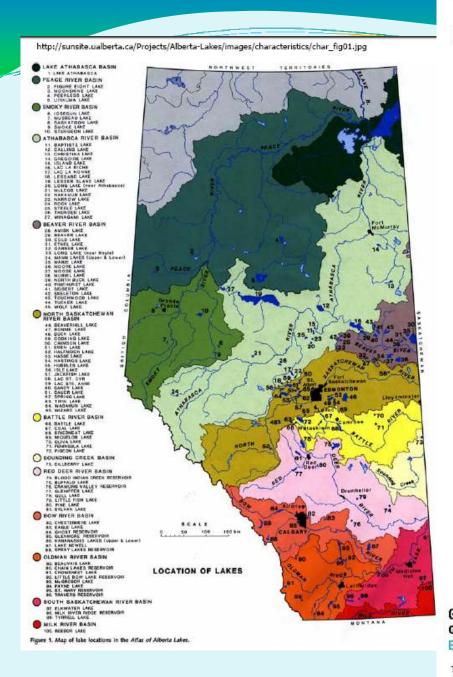
- Natural vs. cultural eutrophication
- Sources of eutrophication
- Spatial distribution-eutrophic & hyper-eutrophic lakes, AB
- Metrics Chlorophyll-a, TDS, Sp. Cond., R²
- Looking at data eutrophic lakes, saline lakes
- Verifying Relationships
 - Total P & Chlorophyll-*a*
 - Total N & Chlorophyll-a
 - Salinity & Chlorophyll-*a*
 - Salinity & Total P
 - Salinity & Total N
- Conclusions

Essential Macro Nutrients

- Nitrogen N
- Phosphorus P
- Potassium K

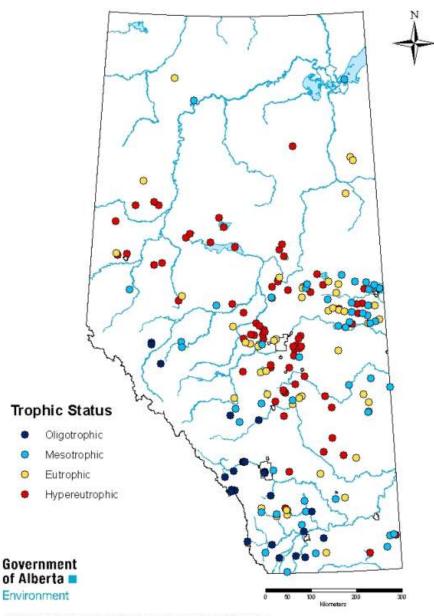
Eutrophication

• Natural eutrophication and lake aging occurs over centuries, and results from natural sources of nutrients and sediments.


• Cultural eutrophication and lake ageing occurs over decades, and results from human-induced urban runoff, sewage effluent, industrial waste, fertilizers, pesticides, and excess sediments.

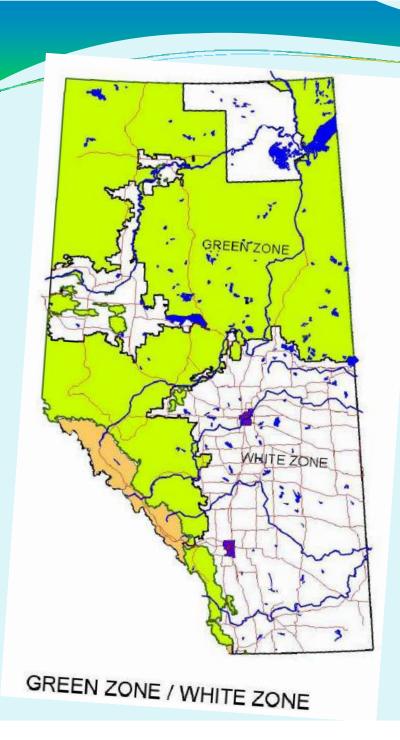
http://www.waterencyclopedia.com/Hy-La/Lake-Management-Issues.html

Sources of Cultural Eutrophication

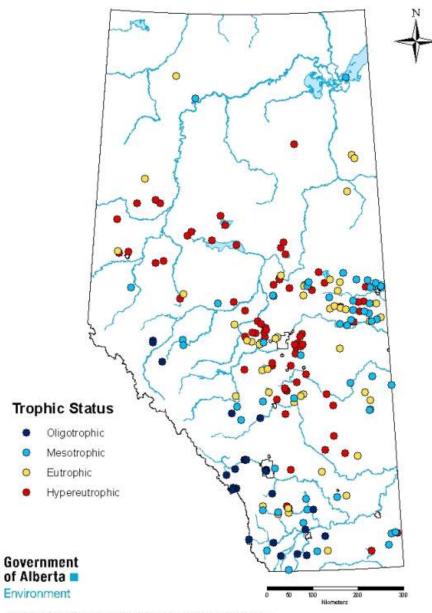

- •Natural runoff (nitrates and phosphates)
- •Discharge of detergents (phosphates)
- •Discharge of treated municipal sewage (nitrates and phosphates)
- •Dissolving of nitrogen oxides from internal combustion engines and furnaces
- •Manure runoff from feedlots (nitrates, phosphates, ammonia)
- •Runoff from streets, lawns, and construction lots (nitrates and phosphates)
- •Runoff and erosion (from cultivation, mining, construction and poor land use)
- •Nitrogen produced by cars and factories
- •Discharge of untreated sewage (nitrates and phosphates)
- Discharge of detergents (phosphates)

http://zolushka4earth.files.wordpress.com/2010/08/culturaleutroph.jpg

TROPHIC STATE OF ALBERTA LAKES


Based on Average Summer (May-September) Total Chlorophyll-a Concentrations

Three most recent years of data was used to calculate trophic status Created July 2009


C

0

Based on Average Summer (May-September) Total Chlorophyll-a Concentrations

Three most recent years of data was used to calculate trophic status Created July 2009

0

Chlorophyll-*a* concentration (µg/L)

- green pigmentation found in all plants including microscopic algae
- An estimate of **algal biomass** surface waters
- Indicator of **trophic** levels surface waters
 - Oligotrophic < 8 μg/L
 - Mesotrophic 8-25 μg/L
 - Eutrophic 26-75 μg/L
 - Hyper-eutrophic > 75 μg/L

Salinity – Total Dissolved Solids

- TDS All solids (usually mineral salts) that are dissolved in water
- TDS concentration (mg/L)
 - Freshwater lakes < 500 mg/L (arbitrary boundary)
 - Slightly saline lakes 500-1000 mg/L
 - Moderately saline lakes 1000-5000 mg/L
 - Saline lakes > 5000 mg/L

Salinity – Specific Conductance

- Dissolved salts in water transmit electrical current (electrical conductivity, EC)
- Measurement dS/m, µS/cm
- Water temperature affects electrical conductivity
- **Specific conductance** EC standardized to 25°C
 - Freshwater ο 1,300 μS/cm
 - Brackish 1,301 28,000 µS/cm
 - Salty > 28,000 µS/cm

Symbols

- N Nitrogen
- P Phosphorus; TP = Total Phosphorus
- HCO3⁻¹ bicarbonate
- CO3²⁻ carbonate
- Mg²⁺ Magnesium
- Na⁺ Sodium
- K+ Potassium
- Cl⁻ Chloride
- SO4²⁻ Sulfate
- Ca ²⁺ Calcium

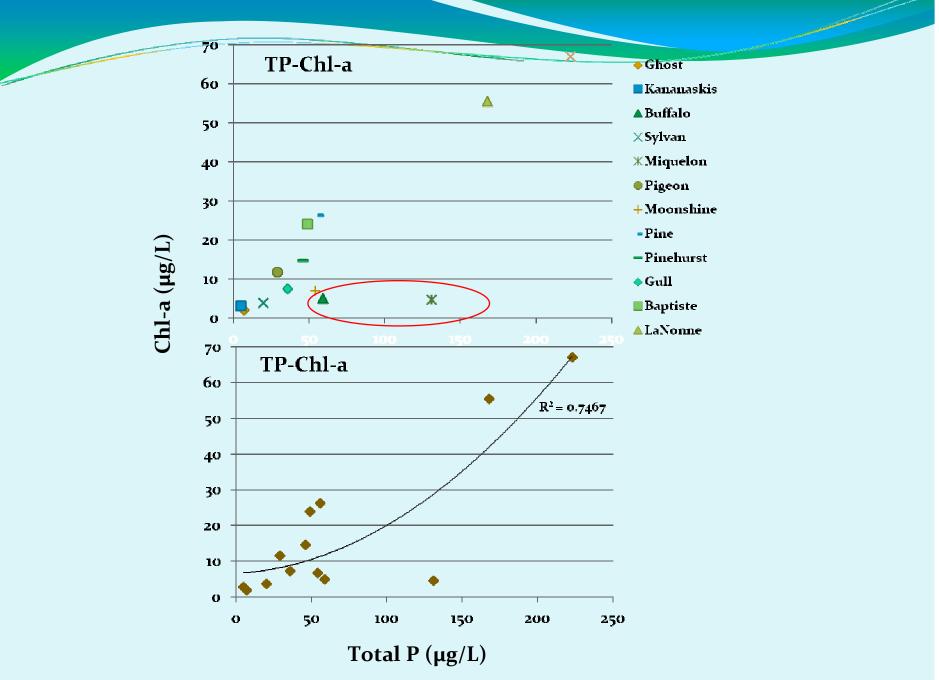
Looking at some AB Lakes

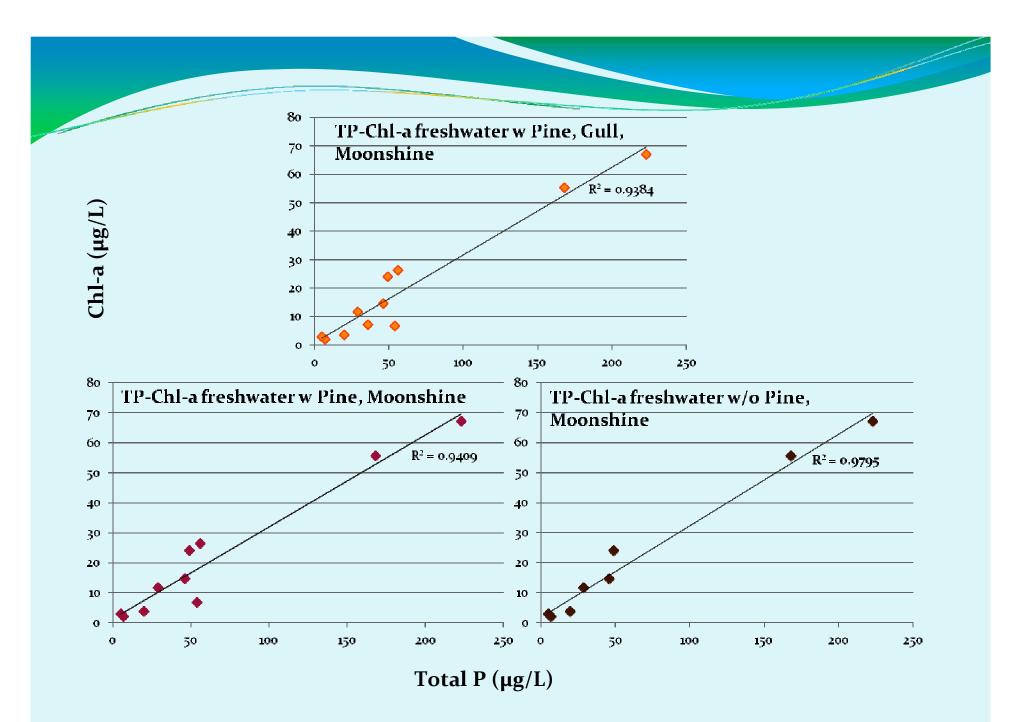
- Data Source Atlas of Alberta Lakes
- Data are from mid 8os

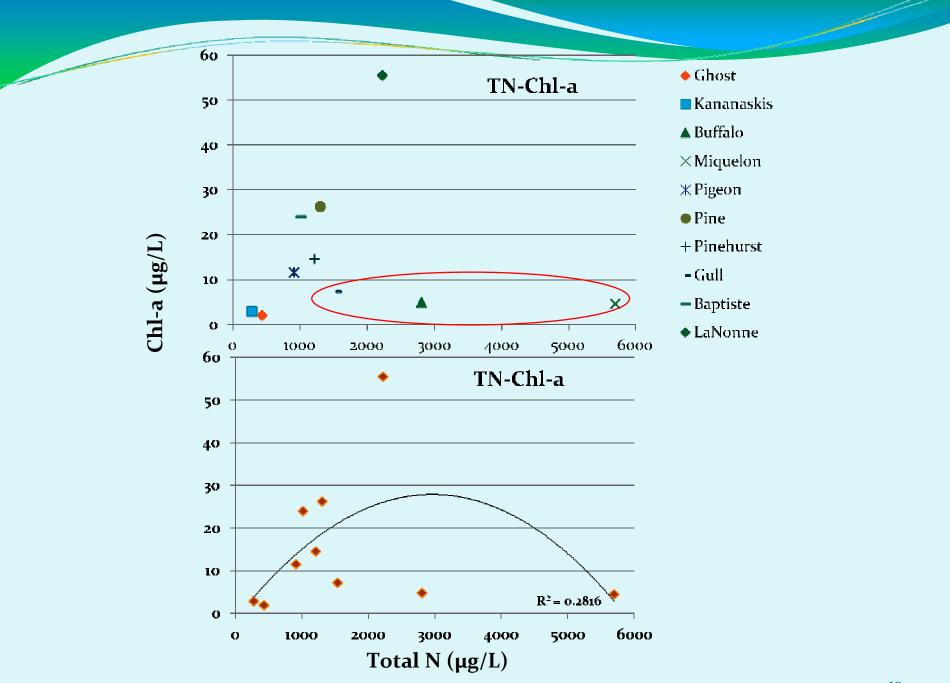
Lake s	Ghos t	Kana nask is	Buffa lo (M)	Sylva n	Miqu elon	Pige on	Moon shine	Pine	Pine hurst	Gull	Bapti ste (S)	La Non ne	Wina gami
Water shed	Bow	Bow	Red Deer	Red Deer	Battle	Battle	Peace	Red Deer	Beave r	Red Deer	Athab asca	Athab asca	Athab asca
	Oligotrophic		Mesotrophic					Hyper-eutrophic					
Salinit y status	Fresh water	Fresh water	Mode rately saline	Fresh water	Saline	Fresh water	Fresh or very slightly saline?	Fresh or very slightly saline?	Fresh water	Slightly saline	Fresh water	Fresh water	Fresh water
Data year	1985	1984	1983	1986	1983	1983- 84	1986	1984	1986	1983	1986	1988	1986
Chl-a µg/L	2	2.9	4.9	3.7	4.6	11.6	6.8	26.3	14.6	7.3	24	55•5	67
Sp Cond µS/cm	277	168	2357	597	6530	283	719	726	280	1144	343	314	453
TDS mg/L	152	90	1595	338	5402	155	446	450	152	713	184	176	266
TP μg/L	7	5	59	20	131	29	54	56	46	36	49	168	223
TN μg/L	432	273	2807		5696	910		1302	1213	1540	1013	2224	
рН	7·3- 7·9	7.1- 8.6	8.9- 9.3	8.9- 9.0	9.3 - 9.4	8.2- 8.6	7.6-8.4	7.9-8.9	7·9- 8.7	9-10.1	7.6- 8.8	8.1-9	8.3- 8.9

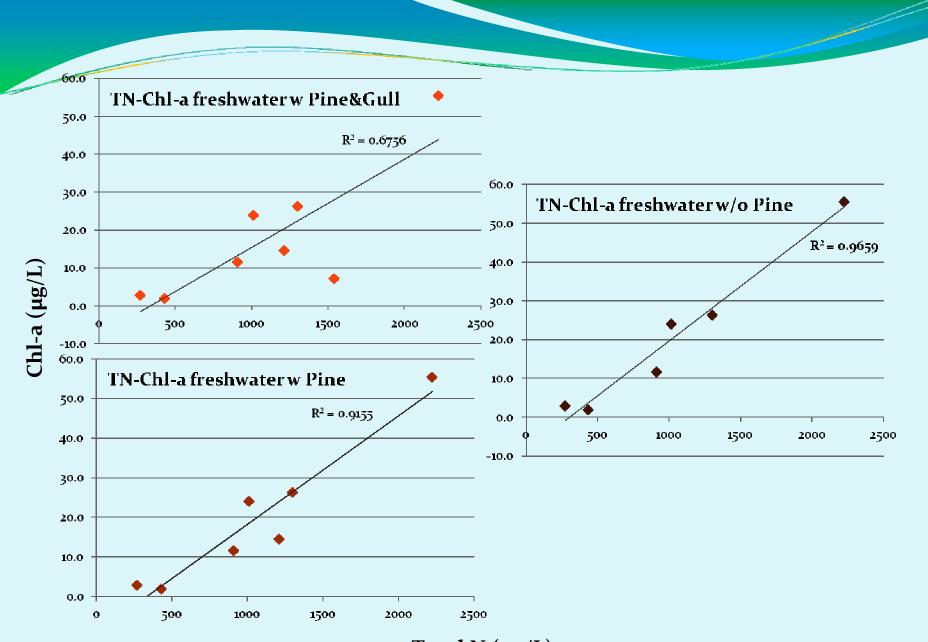
TDS mg/L: freshwater <500, slightly saline 500-1000, moderately saline 1000-5000, saline >5000

Lakes	Gho st	Kana naski s	Buff alo	Sylv an	Miq uelo n	Pige on	Moo nshi ne	Pine	Pine hurs t	Gull	Bapti ste	La Non ne	Wina gami
	Oligotrophic		Mesotrophic			E	utrophic	Hyper-eutrophic					
1. HCO3 mg/L	137	98	922	354	108 3	343	184	179	170	603	191	164	185
2. CO3 mg/L	<1	1	134	21	306	<4	2	23	<6	77	<4	<9	<5
3. Mg mg/L	10	4	53	37	206	10	36	25	13	60	11	10	24
4. Na mg/L	2	0.3	501	64	1473	16	48	108	8	183	21	17	13
5. K mg/L	0.4	0.2	37	7	110	5	6	10	4	18	3	10	10
6. Cl ⁻ mg/L	1	0.5	12	<1	99	<1	<1	6	<1	4	2	3	2
7. SO4 mg/L	31	7	394	16	2413	<5	209	84	<1	67	15	14	79
8. Ca mg/L	37	29	9	18	14	26	53	23	32	8	35	33	42

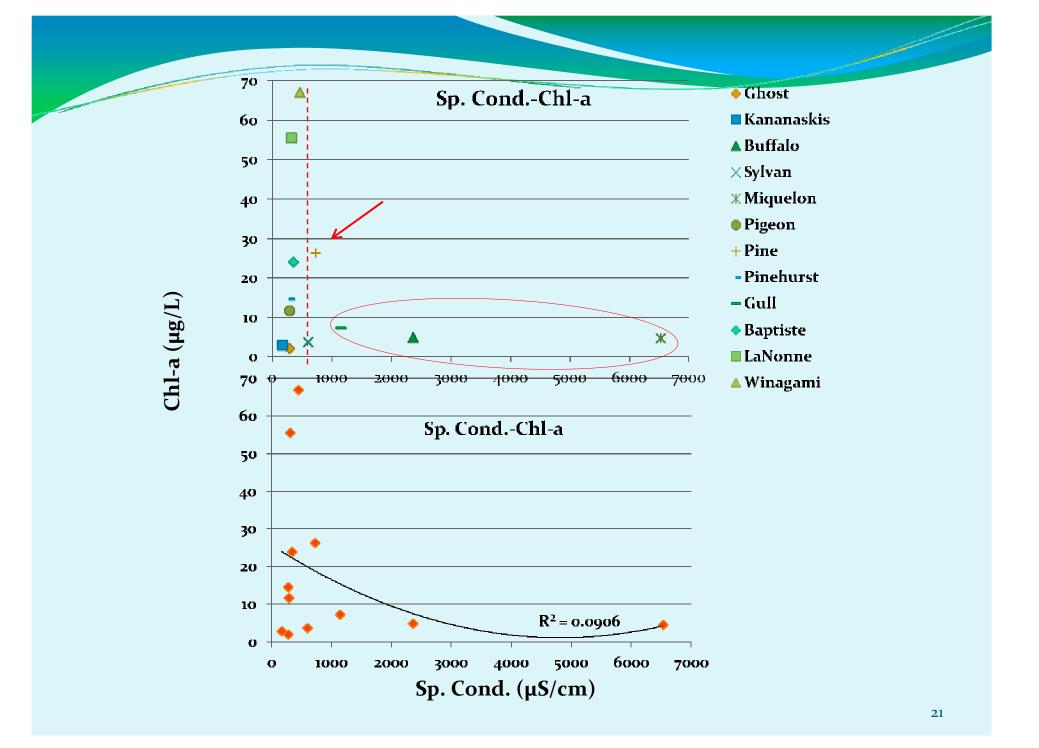

1. Bicarbonate, 2. carbonate, 3. magnesium, 4. sodium, 5. potassium, 6. chloride, 7. sulfate, 8. calcium

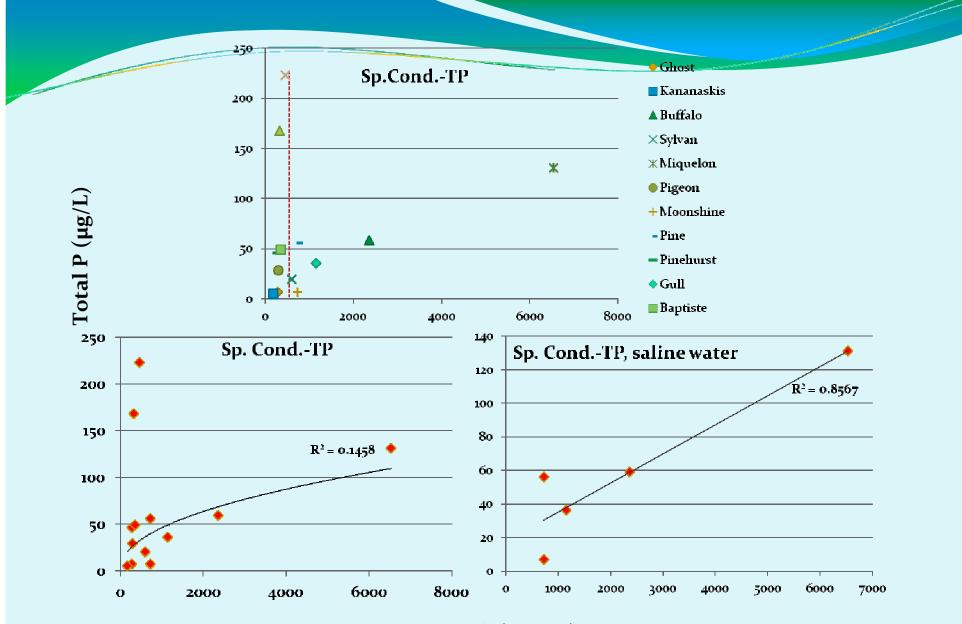

Is there a relationship between:

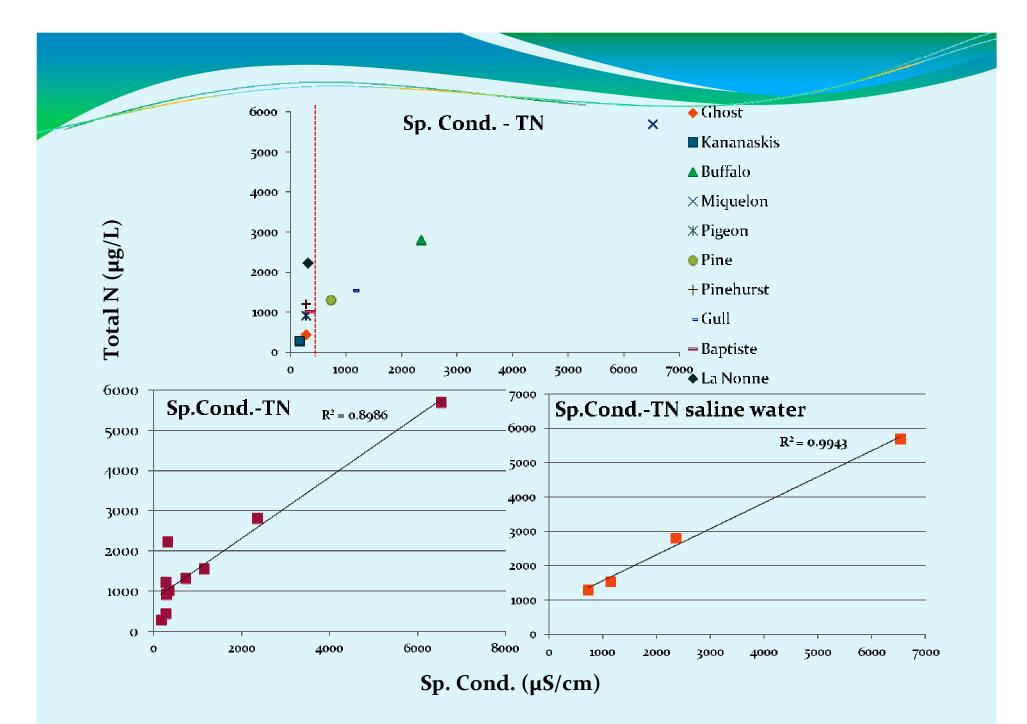

- Total P & Chlorophyll-a?
- Total N & Chlorophyll-a?
- Salinity & Chlorophyll-a?
- Salinity & Total P?
- Salinity & Total N?


R² – coefficient of determination

- Plot values of two variables (from table) with possible relationship on an X axis-Y axis **graph**
- **Strength of relationship** between two variables
- Value = 1 when all data points fall on the regression line (trend line)
- Value approaching 1 = stronger relationship between two variables






Total N (µg/L)

20

Sp. Cond. (μ S/cm)

Conclusions

- In slightly alkaline freshwaters, TN and TP each have a significant linear relationship with Chl-*a*; need to find out interaction of TN & TP
- The effect of salinity to decrease Chl-*a* begins at TDS ~450 mg/L or ~700 µS/cm specific conductivity; may need to change freshwater boundary value
- Salinity tends to retain both TP & TN (more) excessive amounts (> freshwaters) can lead eutrophication at low salinity levels ~700 - ~1000 µS/cm
- At >1000 µS/cm Chl-*a* declines despite high TN and TP concentrations
- Need to know corresponding algal communities freshwater & range of salinity levels.

Conclusion

- The management of nutrients in slightly alkaline lakes need to consider:
 - both N and P concentrations &
 - lake salinity status especially very slight salinity of ~700 to <1000 μS/cm specific conductivity
- [Note: cyanobacteria (not an algae) can fix N from the air]

THANK YOU

Contact

- marilou.montemayor@awc-wpac.ca
- Phone: 780-865-8223