Seeing the Big Picture: Options and Limits for Management of Urban Lakes

Ken Wagner, PhD, CLM Water Resource Services

The impact of phosphorus

- More Pleads tomore algae
- More algae leads to lower water clarity

The impact of phosphorus

 High P also leads to more cyanobacteria, possible health effects therefore linked to high P

The impact of phosphorus

 As algal biomass rises, a greater % of that biomass is cyanobacteria. So more P = more algae = more cyanobacteria.

The impact of development

- Background concentrations for P: 5-50 ppb, with an apparent threshold of impact between 10 and 20 ppb
- Runoff P concentrations: 50 to 5000 ppb, median >370 ppb

 Wastewater treatment effluent P: usually 300 to 6000 ppb, very best treatment achieves 20 to 50 ppb

5-50 ppb

50-5000 ppb

The impact of development

Lake George,NY: 5% developed watershed contributes same P load as remaining undeveloped 95%

75% dev: input P= >140 ppb

The impact of development

- How lakes process the incoming P varies substantially; flushing rate, depth, internal recycling, biological structure, inorganic suspended solids load, and other factors affect inlake P concentration and related algal densities
- Nevertheless, higher input P leads to higher in-lake P and the problems related thereto; it is desirable to address the problems in the watershed rather than in the lake
- Urbanization has a major impact on lake quality

How do we counter development impacts? Wish

- Source and Activity Controls Eliminate or reduce sources which generate pollutants
- Transport Reduction Capture and remove or convert pollutants before they enter target resource
- Instream/Inlake Treatments— enhancing internal processes for pollutant inactivation

Source Controls

- Land use restrictions
- Material storage restrictions
- Product use limitations

Education

Pollutant Trapping

 Buffer strips: a lot more to know than just leaving some vegetated land

Pollutant Trapping

 Wide range of structural options – construction aids like silt fence, passive guards like swales, range of stormwater processing devices

Pollutant Trapping

Detention systems, infiltration basins, filtration systems

Instream/Inlake Treatment

Creating detention within a lake or chemically treating runoff or streamflows

Aluminum treatments becoming more common and fairly effective in short and intermediate timeframes

Doing the math on watershed controls

Can we get the land on the right to act like it is land on the left?

Doing the math on watershed controls

- USEPA 1999 summarizes capture efficiency of many pollutant trapping devices
- Center for Watershed Protection 2003 more summary, rationale and key factors
- USEPA stormwater management database current – documented case histories from which one can infer reliable results

Wide range of possible outcomes, means and medians provide a feel for likely results, range shows importance of understanding key factors

Boiling it down

With reasonable implementation of Best **Management Practices** in a watershed, one can expect to achieve about a 50% reduction in P loading, with a probable maximum around 67%, unless extreme measures like chemical treatment or extensive infiltration are applied

Range and Median () for Expected Removal (%) for Key Pollutants by Selected Management Methods, Compiled from Literature Sources for Actual Projects and Best Professional Judgment Upon Data Review.

	TSS	Total P	Soluble P	Total N	Soluble N	Metals
Street sweeping	5-20	5-20	<5	5-20	<5	5-20
Catch basin cleaning	5-10	<10	<1	<10	<1	5-10
Buffer strips	40-95	20-90	10-80	20-60	0-20	20-60
_	(50)	(30)	(20)	(30)	(5)	(30)
Conventional catch basins	1-20	0-10	0-1	0-10	0-1	1-20
(Some sump capacity)	(5)	(2)	(0)	(2)	(0)	(5)
Modified catch basins	25	0-20	0-1	0-20	0-1	20
(deep sumps and hoods)	(25)	(5)	(0)	(5)	(0)	(20)
Advanced catch basins	25-90	0-19	0-21	0-20	0-6	10-30
(sediment/floatables traps)	(50)	(10)	(0)	(10)	(0)	(20)
Porous Pavement	40-80	28-85	0-25	40-95	-10-5	40-90
	(60)	(52)	(10)	(62)	(0)	(60)
Vegetated swale	60-90	0-63	5-71	0-40	-25-31	50-90
	(70)	(30)	(35)	(25)	(0)	(70)
Infiltration trench/chamber	75-90	40-70	20-60	40-80	0-40	50-90
	(80)	(60)	(50)	(60)	(10)	(80)
Infiltration basin	75-80	40-100	25-100	35-80	0-82	50-90
	(80)	(65)	(55)	(51)	(15)	(80)
Sand filtration system	80-85	38-85	35-90	22-73	-20-45	50-70
	(80)	(62)	(60)	(52)	(13)	(60)
Organic filtration system	80-90	21-95	-17-40	19-55	-87-0	60-90
	(80)	(58)	(22)	(35)	(-50)	(70)
Dry detention basin	14-87	23-99	5-76	29-65	-20-10	0-66
	(70)	(65)	(40)	(46)	(0)	(36)
Wet detention basin	32-99	13-56	-20-5	10-60	0-52	13-96
	(70)	(27)	(-5)	(31)	(10)	(63)
Constructed wetland	14-98	12-91	8-90	6-85	0-97	0-82
	(70)	(49)	(63)	(34)	(43)	(54)
Pond/Wetland	20-96	0-97	0-65	23-60	1-95	6-90
Combination	(76)	(55)	(30)	(39)	(49)	(58)
Chemical treatment	30-90	24-92	1-80	0-83	9-70	30-90
	(70)	(63)	(42)	(38)	(34)	(65)

Doing the math on watershed controls

So if we have a 20% developed watershed that has gone from 5 ppb to 50 ppb as a consequence of runoff impacts, and we apply reasonable BMPs, we expect to lower P to about 25 ppb – not bad, but hardly back to "natural" – we can flirt with restoring function in watersheds with low development %

 If we have a 75% developed watershed, P will be >140 ppb (could be >300 ppb), and even a 67% reduction by BMPs will not be adequate to reduce P to any desirable level

Can we achieve our goals?

- If we are to achieve lake quality targets through stormwater management, we have to do way better than even the highest "reasonable" level expected based on experience to date
- We are going to need a different approach, an emphasis on the techniques that yield very high removal rates (= infiltration or chemical treatment), and dependence on in-lake techniques

Lawn fertilizer issue

- Dodson 2008 in Lake and Reservoir Management: Watershed feature most correlated to poor conditions was % lawn
- Lehman et al. 2009 in Lake and Reservoir Management: Ban on P in fertilizer produced 25% decrease in stream P concentration in first year. Follow up research in review, supports this assessment
- Cities banned or reduced fertilizer P starting in 1990s, whole states moving toward restrictions in 2000s, Scotts to remove P from most lawn fertilizer in next few years.

Low Impact Development (LID)

- LID techniques seek to minimize the generation of runoff and transport of pollutants off properties
- Focus on the source, widespread application, and creativity of approaches are important aspects of LID
- A lot of good work being done, suggests higher "removal" rates than conventional pollutant trapping
- Likely to be essential if we are to counter impacts of existing and future development

- P inactivation has proven useful in many cases
- Internal load control quite achievable, but only temporary if external load is substantial
- Can be used to treat incoming storm water to reduce peak and overall loading

WRS

Morses Pond effort includes P inactivation

Aeration and mixing - overlapping but differing approaches

Key Factors in Aeration

- Adding enough oxygen to counter the demand in the lake (usually about 75% from sediment) and distributing it where needed in the lake
- Maintaining oxygen levels suitable for target aquatic fauna (fish and invertebrates)
- Having enough of a P binder present to inactivate P in presence of oxygen
- Not breaking stratification if part of goal is to maintain natural summer layering of the lake

Destratifying aeration

Lake is mixed completely or partially, input of oxygen comes from bubbles and interaction with lake surface

Non-destratifying aeration:

Bottom layer is aerated, but top layer is unaffected; oxygen input comes bubbles (can be air or oxygen)

About Additives

- Basis in wastewater and sludge treatment
- Less research involved in lake applications
- Oxygen is most important, then nutrient balance
- Bacteria normally already present

Key Factors in Mixing

- Moving enough water to prevent stagnation; may mix whole lake or just the top layer (if any)
- Fostering greater homogeneity in mixed zone and greater interaction with the atmosphere (oxygen and pH effects may be large)
- ◆ Getting enough motion or change in water quality to disrupt target algal species; moving algae to dark zone helps, some potential to disrupt with only surface layer mixing

Updraft Mixing

Downdraft Mixing

Sonication and Algaecides

Sonication

- "Line of sight technique"
- Rocks, plants, other obstructions interfere
- **♦** Not effective on all algae
- Gaining application experience

Proper Use of Algaecides

- Use to prevent bloom, not remove it
- Must know when algal growth is accelerating
- Must know enough about water chemistry to determine most appropriate form of algaecide
- If frequency of application becomes too high, recognize that the technique requires adjustment or will not be adequate for longterm use

Conclusions

- There is a mismatch between impacts of development and countermeasures as traditionally applied; degradation outstrips remedial actions most of the time
- Other than preventing development above some threshold (10%?), there are only a few options that provide the needed level of P control
- Targeted source control, LID, and in-lake treatments have the greatest applicability

Conclusions

- Rehabilitation of severely eutrophied systems may not be realistically achievable with existing tools at application levels that are feasible and affordable
- Protecting lakes with currently desirable conditions would appear to deserve higher priority than some restoration efforts
- Rehabilitating lakes to meet designated uses may not always require extreme nutrient controls

The End

