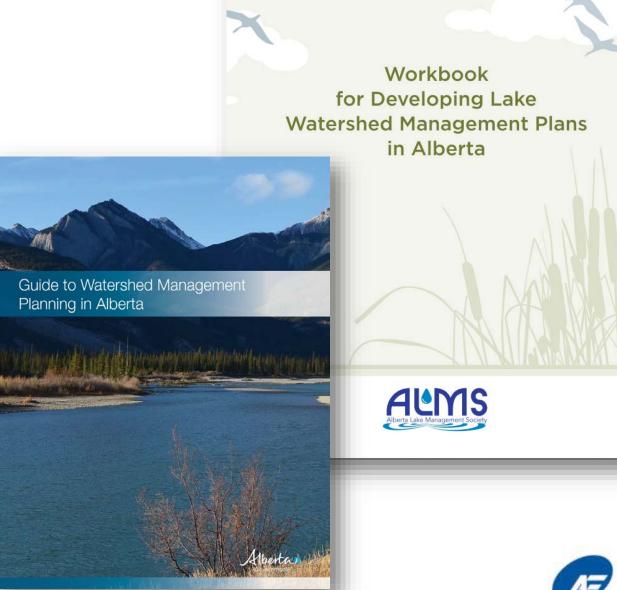


In-Lake and Watershed Management -How does one fit with the other?

Dörte Köster, Ph.D.

ALMS Workshop, September 28, 2018

- What does Watershed Management do?
- What does In-Lake Management do?
- How does one fit with the other?



Lake Watershed Management in AB



Lake Watershed Management Overview

- Goal: Maintain or improve lake ecosystems
- Guidance and provincial support available
- What does it entail?
- How does it work in AB?

Watershed Management Main Steps

Lake Watershed Management In Practice

AWC (2017) Lake Watershed Management in AB

- 16 Lake Watershed Management Plans
- Identified successes and gaps
- Recommended:
 - Clarify and harmonize approach
 - Provincial criteria for lake health, access to data
 - Encourage WMPs, identify lead for implementation
 - Strengthen legislative tools

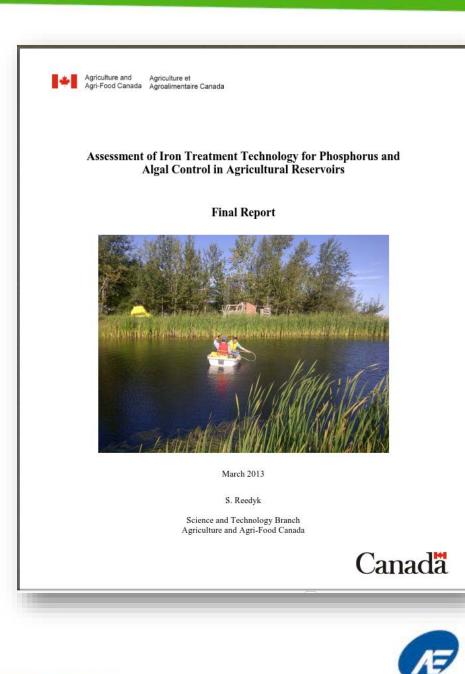
ALBERTA WATER COUNCIL

Recommendations to Improve Lake Watershed Management in Alberta

In-Lake Management in AB

In-Lake Management Overview

- Goal: improve lake water quality
- Lots of examples, no provincial guidance
- Methods to reduce phosphorus in the lake


Aeration

Sediment Inactivation

In-Lake Management Alberta Examples

- Liming in 1980s
- Hypolimnetic withdrawal Pine Lake
- Dugout work
- Phoslock sediment inactivation in Henderson Lake, Lethbridge (2017)
- ACA: aeration to enhance fish habitat

In-Lake Management Alberta Regulatory Process

- Not formalized, is evolving
- 1. Summarize science Define Problem (P Budget is key)
- 2. Evaluate and select options
- 3. Implement
 - Regulatory approval
 - Monitoring

Phosphorus Sources in AB Lakes		Runoff (%)	nospheric Deposition (%)	Sediments/Other (%)	Domestic Sewage (%)	Diversions (%)	Ground-water * (%)	Mean Chlorophyll–a (mg/L)
Alberta Lake	Time Period		Ati					2
Burnstick	1995	90	6	-	4	-	-	2.6
Gull	1999-00	31	11	52	7	-	-	7.5
lsle	1996	49	2	42	7	-	-	38.6
Lesser Slave	1991-93	28	7	65	-	-	-	40.3
Lower Mann	Various	12	1	69	18	-	-	96.5
Moose	Various	61	6	32	1	-	-	20.6
Pakowki	1996	9	2	90	-	-	-	34.6
Pine	1992	36	4	55	6	-	-	22.2
Ste. Anne	1996	36	4	55	5	-	-	43.8
Sandy	Various	21	6	73	1	-	-	82.5
Sylvan	2005	32	20	11	13	-	24	4.4
Thunder	1992-96	13	8	55	-	24	-	28.8
Upper Mann	Various	21	1	55	24	-	-	37.0
Wabamun	1980-82	23	13	55	1	6	2	11.3
Wabamun	2008	3	44	43	1	3	5	11.3
Wizard	Various	35	4	46	15	-	-	22.7
Mean	-	31	8	50	8	2	-	32.9

Fitting In-Lake Management with Watershed Management

Comparison

	Lake Watershed Mgt.	In-Lake Mgt.
Goals	Improve watershed and lake health	Improve lake health
Stakeholders	All lake users, municipalities, province	All lake users, municipalities, province
Approach	Reduce P load from land	Reduce P load from lake bottom
Phase 1	State of the Watershed	State of the Lake Science
Phase 2	Watershed Management Plan (evaluate options)	Evaluate In-Lake Options
Phase 3	Implementation, Monitoring	Implementation, Monitoring
Timelines	Short & long-term	Short & long term

Example – ALMS Workbook

Where you want to be	Watershed Scale Source Activity Control	Eliminate or reduce sources which generate pollutants.	e.g. Fertilizer ban	
	Transport Reduction	Capture and remove or convert pollutants before they enter target resource	e.g. Treatment wetlands	
	Instream/Inlake Treatments	Enhancing internal processes for pollutant inactivation	e.g. Aeration	
Where you want to avoid being	Ecosystem Restoration	Repair damage to resources when controls fail	e.g. Fish habitat restoration	

Example - PLWMP

- Pigeon Lake Integrated Watershed Management Plan
- Includes Section on "The Lake"
- Consider phosphorus from watershed and lake bottom

KEY FINDINGS

Reducing the amount of phosphorus pollution entering the water of Pigeon Lake must be a key goal for managing the lake.

Based on scientific evidence, sources of phosphorus that can be targeted for management include:

 Loading from watershed lands such as from runoff, septic fields, and land use practices; and

2) Loading from the lake bottom (within the lake).

OBJECTIVES

Improve knowledge about phosphorous and cyanobacteria dynamics affecting the lake to reduce phosphorous loading and the intensity of algae blooms.

Investigate the feasibility and safety of in-lake options to reduce bloom formation and/or mitigate the effects of blooms.

Æ

Page 23

"If you want to go fast, go alone. If you want to go far, go together."

African Proverb

Dörte Köster Associated Environmental Consultants Inc. 587.772.0664, kosterd@ae.ca