

THE ALBERTA LAKE MANAGEMENT SOCIETY VOLUNTEER LAKE MONITORING PROGRAM

2015 Lacombe Lake Report

LAKEWATCH IS MADE POSSIBLE WITH SUPPORT FROM:

Ce projet a été réalisé avec l'appui financier de : This project was undertaken with the financial support of:

Environnement Canada Environment Canada

Alberta Lake Management Society's LakeWatch Program

LakeWatch has several important objectives, one of which is to collect and interpret water quality data on Alberta Lakes. Equally important is educating lake users about their aquatic environment, encouraging public involvement in lake management, and facilitating cooperation and partnerships between government, industry, the scientific community and lake users. LakeWatch Reports are designed to summarize basic lake data in understandable terms for a lay audience and are not meant to be a complete synopsis of information about specific lakes. Additional information is available for many lakes that have been included in LakeWatch and readers requiring more information are encouraged to seek those sources.

ALMS would like to thank all who express interest in Alberta's aquatic environments and particularly those who have participated in the LakeWatch program. These people prove that ecological apathy can be overcome and give us hope that our water resources will not be the limiting factor in the health of our environment.

Data in this report is still in the validation process.

Acknowledgements

The LakeWatch program is made possible through the dedication of its volunteers. We would like to thank all the members of the Lacombe Lake Watershed Stewardship Society who assisted with sampling Lacombe Lake in 2015, including: Anto Davis, Elaine Atkinson Jones, Cliff Soper, and Ed Zaparniuk. We would also like to thank Laticia McDonald, Ageleky Bouzetos, and Mohamad Youssef who were summer technicians with ALMS in 2015. Executive Director Bradley Peter was instrumental in planning and organizing the field program. Mike Bilyk was involved in the training aspects of the program. Lisa Reinbolt was responsible for data management. This report was prepared by Bradley Peter and Alicia Kennedy. The Beaver River Watershed Alliance (BRWA), the Lakeland Industry and Community Association (LICA), the Alberta Environmental Monitoring Evaluation and Reporting Agency (AEMERA), and Environment Canada, were major sponsors of the program.

LACOMBE LAKE:

Lacombe Lake is a pothole lake found in Lacombe County in central Alberta. It is located 5 km north of the town of Blackfalds and 15 km north of Red Deer. There are no public campgrounds around the lake as most of the land is private farms and homesteads as well as public land and reserves. It is thought that the lake was once called Jackfish Lake due to the northern pike found in the lake, though in 1975 the name was changed to Lacombe Lake. The Lacombe Lake area is part of the Treaty 6 Nations and was an area where the Samson and Erminskin Cree

Figure 1 –Photo of Lacombe Lake. Photo by Brittany Kereliuk, 2014.

Nations hunted and travelled. Permanent camps were traditionally located in wooded areas as well as along rivers, and a known trade existed just south of Gull Lake.

The lake is long and narrow, with a length of about 3 km, a maximum depth of 2.9 m, and a maximum width of about 500 m. Lacombe Lake has numerous bays and points which give it a distinct shape. It is not known to be a popular fishing destination but the lake is used for non-motorized recreational water sports as well as swimming. Lacombe Lake is found in the Aspen Parkland ecoregion of Alberta, much of which is now farmland with other foliage such as trembling aspen, oak, mixed tall shrubs, and intermittent fescue grasslands⁴.

Known sportfish species at Lacombe lake are the northern pike, though angling websites state that other species may include walleye, burbot, whitefish, rainbow trout, brown trout, and brook trout¹. Lacombe Lake has a large population of macrophytes, including yellow pond lily, Richardson's pondweed, stonewort, cattail, bulrushes, and bladderwort. Due to its small size, dense macrophytes, and limited recreational activity, waterfowl are known to frequent the lake. Known species include the mallard, common grebe, goldeneye, scaup, and ruddy duck¹. Larger vertebrates that are found around the lake are deer, muskrat, lynx, and beavers.

In the 1960s, the Prairie Farm Rehabilitation Association constructed a weir on Whelp Creek to control and direct the flow into the north end of Lacombe Lake during periods of high flow. In the years previous to 2008, residents noticed that the water quality of Lacombe Lake was starting to deteriorate, as well as excessive macrophytes growth across the lake. The diversion was stopped and Golder Associates Ltd. assessed the water quality of Lacombe Lake over a period of 4 years. Golder Associates Ltd. concluded that the diversion may have brought in excess nutrients into Lacombe Lake and recommendations included enhanced monitoring, finding the

 $^{^{1}\ \}underline{http://www.hookandbullet.com/fishing-lacombe-lake-blackfalds-ab/}\ 2015$

² Golder Associates Ltd. 2013. Lacombe Lake Water Quality Assessment - Alberta

³ Ecoregions of Canada. 1995. Available at: http://ecozones.ca/English/region/156.html

source of nutrients and bacteria, and improving water quality through best management practices. Best management practices include watershed controls such as fertilizer restrictions, restoration of riparian vegetation along shorelines, and nutrient management planning.

WATER QUANTITY:

There are many factors influencing water quantity. Some of these factors include the size of the lakes drainage basin, precipitation, evaporation, water consumption, ground water influences, and the efficiency of the outlet channel structure at removing water from the lake. Requests for water quantity monitoring should go through Environment and Sustainable Resource Developments Monitoring and Science division.

No water quantity data has been collected at Lacombe Lake; therefore, the connections between surface water and groundwater are not yet understood.

WATER CLARITY AND SECCHI DEPTH:

Water clarity is influenced by suspended materials, both living and dead, as well as dissolved colored compounds in the water column. During the melting of snow and ice in spring, lake water can become turbid (cloudy) from silt transported into the lake. Lake water usually clears in late spring but then becomes more turbid with increased algal growth as the summer progresses. The easiest and most widely used measure of lake water clarity is the Secchi disk depth.

Secchi disk depth at Lacombe Lake average 1.74 m in 2015. This is slightly higher (more clear) than the 2014 average of 1.54 m. Throughout the summer, Secchi disk depth fluctuated from a maximum of 2.25 m on June 27th to a minimum of 1.30 m on July 18th. Secchi disk depth appeared closely correlated with chlorophyll-*a* concentrations, suggesting phytoplankton communities may be dense enough to impact water clarity. As a shallow lake, water clarity was often great enough to allow light to reach to the lakebed.

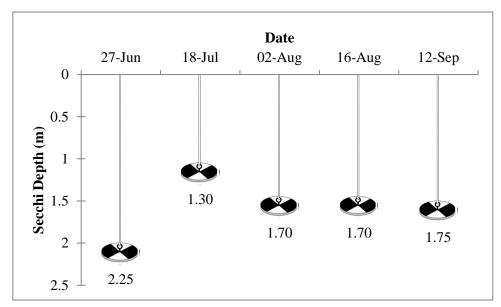
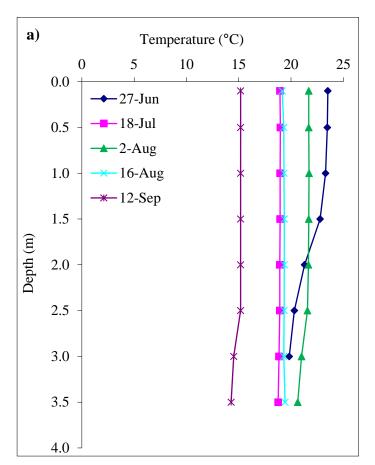



Figure 2 –Secchi disk depth measured five times over the course of the summer at Lacombe Lake in 2015.

WATER TEMPERATURE AND DISSOLVED OXYGEN:

Water temperature and dissolved oxygen profiles in the water column can provide information on water quality and fish habitat. The depth of the thermocline is important in determining the depth to which dissolved oxygen from the surface can be mixed. Please refer to the end of this report for descriptions of technical terms.

Lacombe Lake was warm in the summer of 2015 (Figure 3a). A maximum surface water temperature of 23.52 °C was observed on June 27th and, at the lakebed, a maximum temperature of 20.64 °C was observed on August 2nd (Figure 3a). Weak thermal stratification was observed on June 27th between 1.50 and 3.00 m. This stratification was not strong enough to negatively impact dissolved oxygen concentrations, however. By September 12th, the water column was relatively isothermal, measuring 15.11 °C at the surface.

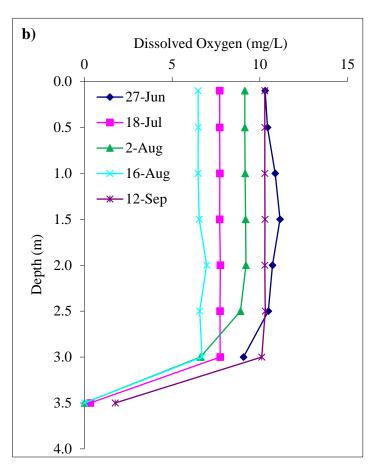


Figure 3 - a) Temperature (°C) and b) dissolved oxygen (mg/L) profiles measured five times over the course of the summer at Lacombe Lake.

In 2015, Lacombe Lake was well oxygenated (Figure 3b). On each trip, the majority of the water column fell above the Canadian Council for Ministers of the Environment guidelines for the Protection of Aquatic Life of 6.5 mg/L (Figure 3b). At the surface, a maximum oxygen concentration of 10.30 mg/L was observed on June 27th and a minimum oxygen concentration of 6.48 mg/L was observed on August 16th.

WATER CHEMISTRY:

ALMS measures a suite of water chemistry parameters. Phosphorus, nitrogen, and chlorophyll-a are important because they are indicators of eutrophication, or excess nutrients, which can lead to harmful algal/cyanobacteria blooms. One direct measure of harmful cyanobacteria blooms are Microcystins, a common group of toxins produced by cyanobacteria. See Table 1 for a more complete list of parameters.

Total phosphorus (TP) concentration measured an average of 19 μ g/L – this value falls into the mesotrophic, or moderately productive, classification (Table 2). TP fluctuated little throughout the summer, measuring a maximum of 25 μ g/L on July 18th and a minimum of 16 μ g/L on June 27th (Figure 4). An average value of 19 μ g/L is the lowest TP concentration historically observed at Lacombe Lake.

Average total Kjeldahl nitrogen (TKN) concentration measured 1.4 mg/L in 2015 (Table 2). This concentration falls well within the historical variation observed at Lacombe Lake and falls into the eutrophic, or productive, classification.

Chlorophyll-a concentration measured an average of 7.5 μ g/L in 2015 (Table 2). This is only slightly lower than that observed in 2014 and falls into the mesotrophic, or moderately productive, classification. Throughout the summer, chlorophyll-a concentration ranged from a minimum of 3.5 μ g/L on June 27th to a maximum of 9.5 μ g/L on July 18th (Figure 4).

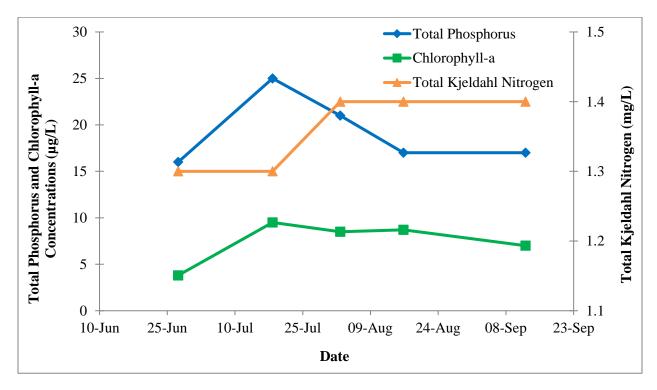


Figure 4 –Total phosphorus (μ g/L), chlorophyll-a (μ g/L), and total Kjeldahl nitrogen (mg/L) measured five times over the course of the summer at Lacombe Lake.

Average pH measured 8.78 in 2015 – this value is well above neutral. Lacombe Lake has high alkalinity (212 mg/L CaCO_3) and bicarbonate (230 mg/L HCO_3) concentration which will help to buffer the lake against changes to pH (Table 2). Sodium (33 mg/L), magnesium (32 mg/L), and calcium (19 mg/L) are the dominant ions in Lacombe Lake, contributing to a conductivity of $478 \mu \text{S/cm}$. More data needs to be collected to understand historical trends (Table 2).

Metals were measured twice throughout the summer at Lacombe Lake and all values fell within their respective guidelines (Table 3).

MICROCYSTIN:

Microcystins are toxins produced by cyanobacteria (blue-green algae) which, when ingested, can cause severe liver damage. Microcystins are produced by many species of cyanobacteria which are common to Alberta's Lakes, and are thought to be the one of the most common cyanobacteria toxins. In Alberta, recreational guidelines for microcystin are set at 20 µg/L.

Microcystin toxins were detected in low concentrations in Lacombe Lake. On each trip, microcystin concentrations fell well below the recommended recreational guideline of 20 ug/L. Maximum microcystin concentration measured 0.64 ug/L on September 12th, while a minimum concentration of 0.11 ug/L was observed on June 27th.

Table 1 – Microcystin concentrations measured five times over the course of the summer at Lacombe Lake in 2015.

Date	Microcystin (μg/L)
27-Jun	0.11
18-Jul	0.22
02-Aug	0.31
16-Sep	0.60
12-Sep	0.64

INVASIVE SPECIES:

Quagga and Zebra mussels are invasive species which, if introduced to our lakes, will have significant negative ecological, economical, and recreational impacts. ALMS collects water samples which are analyzed for mussel veligers (juveniles) and monitors substrates for adult mussels. In order to prevent the spread of invasive mussels, always clean, drain, and dry your boat between lakes. To report mussel sightings or mussel-fouled boats, call the confidential Alberta hotline at 1-855-336-BOAT.

In 2015, no zebra or quagga mussels were detected in Lacombe Lake.

Edited Table: Average water quality values for Lacombe Lake. This table has been updated to exclude data collected by Golder and Associates from 2008, 2009, and 2010 due to high detection limits (11/19/18).

Parameter	2008	2009	2010	2011	2012	2014	2015	2016	2017
TP (μg/L)	\	\	\	46	16	23	19	16	27
TDP (μg/L)	\	\	\	\	\	5.1	6	2.7	4.4
Chlorophyll-a (μg/L)	\	\	\	\	\	8	7.5	8.6	15
Secchi depth (m)	\	\	\	\	\	1.54	1.74	1.77	1.45
TKN (mg/L)	\	\	\	1.6	1.3	1.3	1.4	1.3	1.3
NO ₂ -N and NO ₃ -N (μg/L)	\	\	\	4.5	3	4.8	2.5	2.5	\
NH ₃ -N (μg/L)	\	\	\	143	75	19	25	54	\
DOC (mg/L)	\	\	\	\	\	\	17	14.6	15.2
Ca (mg/L)	\	\	\	\	\	27	20	21	24
Mg (mg/L)	\	\	\	\	\	31	32	34	31
Na (mg/L)	\	\	\	\	\	33.8	33	36	33
K (mg/L)	\	\	\	\	\	12.4	12	12	11
SO ₄ ²⁻ (mg/L)	\	\	\	\	\	14.1	16	14	13
Cl ⁻ (mg/L)	\	\	\	\	\	21.1	25	25	27
CO ₃ (mg/L)	\	\	\	\	\	7.93	14	8	7
HCO ₃ (mg/L)	\	\	\	\	\	266	230	254	255
рН	\	\	\	\	\	8.49	8.78	8.62	8.53
Conductivity (μS/cm)	\	\	\	\	\	503	478	490	515
Hardness (mg/L)	\	\	\	\	\	196	182	192	185
TDS (mg/L)	\	\	\	\	\	278	266	280	278
Microcystin (μg/L)	\	\	\	\	\	0.15	0.38	0.28	1.41
Total Alkalinity (mg/L CaCO ₃)	\	\	\	\	\	230	212	224	220

2010 & 2011 data retrieved from Hyatt, C. "Lacombe Lake Water Quality Assessment - Alberta." Golder and Associates. Project No. 12-1151-0333

2014 & 2017 data collected by Alberta Environment and Parks.

Table 2 - Average Secchi disk depth and water chemistry values for Lacombe Lake. Previous years averages are provided for comparison.

Parameter	2008	2009	2010	2011	2012	2014	2015
TP (µg/L)	200	233	129	45.67	82	22	19
TDP (μ g/L)	\	\	\	\	\	5.12	6
Chlorophyll-a (µg/L)	\	\	\	\	\	7.68	7.5
Secchi depth (m)	\	\	\	\	\	1.54	1.74
TKN (mg/L)	1.1	1.9	1.9	1.6	1.3	1.3	1.4
NO_2 and NO_3 (µg/L)	20	35	13.2	4.5	3	5.28	2.5
$NH_3 (\mu g/L)$	450	858.33	285	860	375	18.02	25
DOC (mg/L)	\	\	\	\	\	\	17
Ca (mg/L)	\	\	\	\	\	27.18	20
Mg (mg/L)	\	\	\	\	\	31.62	32
Na (mg/L)	\	\	\	\	\	34.08	33
K (mg/L)	\	\	\	\	\	12.63	12
SO_4^{2-} (mg/L)	\	\	\	\	\	14.18	16
$Cl^{-}(mg/L)$	\	\	\	\	\	21.45	25
CO_3 (mg/L)	\	\	\	\	\	8.12	14
HCO ₃ (mg/L)	\	\	\	\	\	261	230
рН	\	\	\	\	\	8.54	8.78
Conductivity (µS/cm)	\	\	\	\	\	505.67	478
Hardness (mg/L)	\	\	\	\	\	198	182
TDS (mg/L)	\	\	\	\	\	278.17	266
Microcystin (µg/L)	\	\	\	\	\	0.15	0.38
Total Alkalinity (mg/L							
CaCO ₃)	\	\	\	\	\	228	212

Note: TP = total phosphorous, TDP = total dissolved phosphorous, Chl-a = chlorophyll-a, TKN = total Kjeldahl nitrogen. NO₂₊₃ = nitrate+nitrite, NH₃ = ammonia, DOC = dissolved organic carbon, Ca = calcium, Mg = magnesium, Na = sodium, K = potassium, SO₄ = sulphate, Cl = chloride, CO₃ = carbonate, HCO₃ = bicarbonate, TDS = total dissolved solids, TSS = total suspended solids. A forward slash (/) indicates an absence of data.

Table 3 - Average concentrations of metals measured in Lacombe Lake on August 2nd, 16th, and September 12th. Values shown for 2015 are an average of those dates. The CCME heavy metal Guidelines for the Protection of Freshwater Aquatic Life (unless otherwise indicated) are presented for reference.

Metals (Total	2014 2015 C:-Jolian					
Recoverable)	2014	2015	Guidelines			
Aluminum μg/L	14	11.5667	100 ^a			
Antimony μg/L	0.0595	0.0643	6 ^e			
Arsenic μg/L	0.9115	0.9550	5			
Barium μg/L	62.25	45.67	1000 ^e			
Beryllium μg/L	0.004	0.0073	100 ^{d,f}			
Bismuth μg/L	0.0005	0.0302	/			
Boron μg/L	45.75	46.63	5000 ^{ef}			
Cadmium µg/L	0.0015	0.0030	$0.085^{\rm b}$			
Chromium μg/L	0.175	0.180	/			
Cobalt µg/L	0.033	0.041	1000^{f}			
Copper µg/L	0.3975	0.6967	4 ^c			
Iron μg/L	17.7	12.4	300			
Lead µg/L	0.01475	0.1047	7°			
Lithium μg/L	19.8	22.13	2500^{g}			
Manganese µg/L	48.1	53.2	200^{g}			
Molybdenum μg/L	0.137	0.104	73 ^d			
Nickel µg/L	0.042	0.109	150°			
Selenium µg/L	0.175	0.057	1			
Silver μg/L	0.001	0.005	0.1			
Strontium µg/L	199.5	139.3	/			
Thallium μg/L	0.001575	0.0121	0.8			
Thorium μg/L	0.001975	0.0938	/			
Tin µg/L	0.00775	0.0320	/			
Titanium μg/L	0.865	0.9833	/			
Uranium μg/L	0.6785	0.5223	100e			
Vanadium μg/L	0.185	0.1667	$100^{f,g}$			
Zinc μg/L	0.95	1.37	30			

Values represent means of total recoverable metal concentrations.

^a Based on pH \geq 6.5; calcium ion concentrations [Ca⁺²] \geq 4 mg/L; and dissolved organic carbon concentration [DOC] \geq 2 mg/L.

^bBased on water Hardness of 300 mg/L (as CaCO₃)

^cBased on water hardness > 180mg/L (as CaCO₃)

^dCCME interim value.

^e Based on Canadian Drinking Water Quality guideline values.

^fBased on CCME Guidelines for Agricultural use (Livestock Watering).

^g Based on CCME Guidelines for Agricultural Use (Irrigation).

A forward slash (/) indicates an absence of data or guidelines.

A BRIEF INTRODUCTION TO LIMNOLOGY

INDICATORS OF WATER QUALITY:

Water samples are collected in LakeWatch to determine the chemical characteristics that characterize general water quality. Though not all encompassing, the variables collected in LakeWatch are sensitive to human activities in watersheds that can cause degraded water quality. For example, nutrients such as phosphorus and nitrogen are important determinants of lake productivity. The concentrations of these nutrients in a lake are impacted (typically elevated) by land use changes such as increased crop production or livestock grazing. Elevated nutrient concentrations can cause increases in undesirable algae blooms resulting in low dissolved oxygen concentrations, degraded habitat for fish and noxious smells. A large increase in nutrients over time may also indicate sewage inputs which in turn may result in other human health concerns associated with bacteria or the protozoan *Cryptosporidium*.

TEMPERATURE AND MIXING:

Water temperature in a lake dictates the behavior of many chemical parameters responsible for water quality. Heat is transferred to a lake at its surface and slowly moves downward depending on water circulation in the lake. Lakes with a large surface area or a small volume tend to have greater mixing due to wind. In deeper lakes, circulation is not strong enough to move warm water to depths typically greater than 4 or 5 m and as a result cooler denser water remains at the bottom of

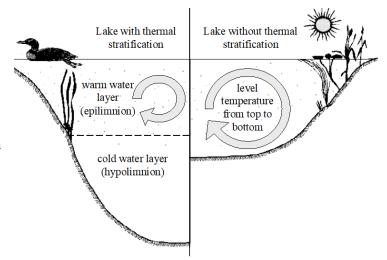


Figure A: Difference in the circulation of the water column depending on thermal stratification.

the lake. As the difference in temperature between warm surface and cold deeper water increases, two distinct layers are formed. Limnologists call these layers of water the **epilimnion** at the surface and the **hypolimnion** at the bottom. The layers are separated by a transition layer known as the **metalimnion** which contains the effective wall separating top and bottom waters called a **thermocline**. A thermocline typically occurs when water temperature changes by more than one degree within one meter depth. The hypolimnion and epilimnion do not mix, nor do elements such as oxygen supplied at the surface move downward into the hypolimnion. In the fall, surface waters begin to cool and eventually reach the same temperature as hypolimnetic water. At this point the water mixes from top to bottom in what is often called a **turnover** event. Surface water cools further as ice forms and again a thermocline develops this time with 4° C water at the bottom and near 0° C water on the top.

In spring another turnover event occurs when surface waters warm to 4° C. Lakes with this mixing pattern of two stratification periods and two turnover events are called **dimictic** lakes. In shallower lakes, the water column may mix from top to bottom most of the ice-free season with occasional stratification during periods of calm warm conditions. Lakes that mix frequently are **termed polymictic** lakes. In our cold climate, many shallow lakes are **cold monomictic meaning a thermocline develops every winter, there is one turnover event in spring but the remainder of the ice free season the lake is polymictic.**

DISSOLVED OXYGEN:

Oxygen enters a lake at the lake surface and throughout the water column when produced by photosynthesizing plants, including algae, in the lake. Oxygen is consumed within the lake by respiration of living organisms and decomposition of organic material in the lake sediments. In lakes that stratify (see temperature above), oxygen that dissolves into the lake at the surface cannot mix downward into the hypolimnion. At the same time oxygen is depleted in the hypolimnion by decomposition. The result is that the hypolimnion of a lake can become **anoxic**, meaning it contains little or no dissolved oxygen. When a lake is frozen, the entire water column can become anoxic because the surface is sealed off from the atmosphere. Winter anoxic conditions can result in a fish-kill which is particularly common during harsh winters with extended ice-cover. Alberta Surface Water Quality Guidelines suggest dissolved oxygen concentrations (in the epilimnion) must not decline below 5 mg•L⁻¹ and should not average less than 6.5 mg•L⁻¹ over a seven-day period. However, the guidelines also require that dissolved oxygen concentrations remain above 9.5 mg•L⁻¹ in areas where early life stages of aquatic biota, particularly fish, are present.

GENERAL WATER CHEMISTRY:

Water in lakes always contains substances that have been transported by rain and snow or have entered the lake in groundwater and inflow streams. These substances may be dissolved in the water or suspended as particles. Some of these substances are familiar minerals, such as sodium and chloride, which when combined form table salt, but when dissolved in water separate into the two electrically charged components called **ions**. Most dissolved substances in water are in ionic forms and are held in solution due to the polar nature of the water molecule. **Hydrophobic** (water-fearing) compounds such as oils contain little or no ionic character, are non-polar and for this reason do not readily dissolve in water. Although hydrophobic compounds do not readily dissolve, they can still be transported to lakes by flowing water. Within individual lakes, ion concentrations vary from year to year depending on the amount and mineral content of the water entering the lake. This mineral content can be influenced by the amount of precipitation and other climate variables as well as human activities such as fertilizer and road salt application.

PHOSPHORUS AND NITROGEN:

Phosphorus and nitrogen are important nutrients limiting the growth of algae in Alberta lakes. While nitrogen usually limits agricultural plants, phosphorus is usually in shortest supply in lakes. Even a slight increase of phosphorus in a lake can, given the right conditions, promote algal blooms causing the water to turn green in the summer and impair recreational uses. When

pollution originating from livestock manure and human sewage enters lakes not only are the concentrations of phosphorus and nitrogen increased but nitrogen can become a limiting nutrient which is thought to cause blooms of toxic algae belonging to the cyanobacteria. Not all cyanobacteria are toxic, however, the blooms can form decomposing mats that smell and impair dissolved oxygen concentrations in the lake.

CHLOROPHYLL-A:

Chlorophyll *a* is a photosynthetic pigment that green plants, including algae, possess enabling them to convert the sun's energy to living material. Chlorophyll *a* can be easily extracted from algae in the laboratory. Consequently, chlorophyll *a* is a good estimate of the amount of algae in the water. Some highly productive lakes are dominated by larger aquatic plants rather than suspended algae. In these lakes, chlorophyll *a* and nutrient values taken from water samples do not include productivity from large aquatic plants. The result, in lakes like Chestermere which are dominated by larger plants known as macrophytes, can be a lower trophic state than if macrophyte biomass was included. Unfortunately, the productivity and nutrient cycling contributions of macrophytes are difficult to sample accurately and are therefore not typically included in trophic state indices.

SECCHI DISK TRANSPARENCY:

Lakes that are clear are more attractive for recreation, whereas those that are turbid or murky are considered by lake users to have poor water quality. A measure of the transparency or clarity of the water is performed with a Secchi disk with an alternating black and white pattern. To measure the clarity of the water, the Secchi disk is lowered down into the water column and the depth where the disk disappears is recorded. The Secchi depth in lakes with a lot of algal growth will be small while the Secchi depth in lakes with little algal growth can be very deep. However, low Secchi depths are not caused by algal growth alone. High concentrations of suspended sediments, particularly fine clays or glacial till, are common in plains or mountain reservoirs of Alberta. Mountain reservoirs may have exceedingly low Secchi depths despite low algal growth and nutrient concentrations.

The euphotic zone or the maximum depth that light can penetrate into the water column for actively growing plants is calculated as twice the Secchi depth. Murky waters, with shallow Secchi depths, can prevent aquatic plants from growing on the lake bottom. Conversely, aquatic plants can ensure lakes have clear water by reducing shoreline erosion and stabilizing lake bottom sediments. In Alberta, many lakes are shallow and bottom sediments contain high concentrations of nutrients. Without aquatic plants, water quality may decline in these lakes due to murky, sediment laden water and excessive algal blooms. Maintaining aquatic plants in certain areas of a lake is often essential for ensuring good water clarity and a healthy lake as many organisms, like aquatic invertebrates and insects, depend on aquatic plants for food and shelter.

TROPHIC STATE:

Trophic state is classification of lakes into four categories of fertility and is a useful index for rating and comparing lakes. From low to high nutrient and algal biomass (as chlorophyll) concentrations, the trophic states are; oligotrophic, mesotrophic, eutrophic and hypereutrophic (Table 2).

A majority of lakes in Alberta contain naturally high levels of chlorophyll a (8 to 25 μ g/L) due to our deep fertile soils. These lakes are usually considered fertile and are termed eutrophic. The nutrient and algal biomass concentrations that define these categories are shown in the following table, a figure of Alberta lakes compared by trophic state can be found on the ALMS website.

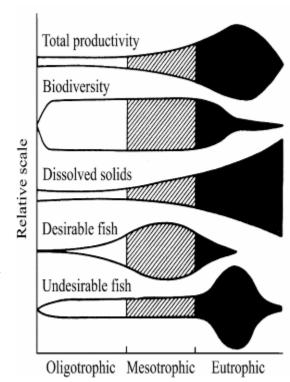


Figure B: Suggested changes in various lake characteristics with eutrophication. From "Ecological Effects of Wastewater", 1980.

Table A - Trophic status classification based on lake water characteristics.

Trophic state	Total Phosphorus (μg•L ⁻¹)	Total Nitrogen (μg•L ⁻¹)	Chlorophyll a (µg•L ⁻¹)	Secchi Depth (m)
Oligotrophic	< 10	< 350	< 3.5	> 4
Mesotrophic	10 - 30	350 - 650	3.5 - 9	4 - 2
Eutrophic	30 – 100	650 - 1200	9 - 25	2 - 1
Hypereutrophic	> 100	> 1200	> 25	< 1