

Phosphorus Budgets – What do and what don't they tell us?

Dörte Köster, Ph.D.

ALMS Workshop, Chestermere, September 18, 2019

Questions

- What is a Phosphorus Budget?
- How to estimate external and internal sources of Phosphorus to a lake?
- What does and what doesn't the Phosphorus budget tell us?
- Where do we go from here?

What is a Phosphorus Budget?

Family Budget

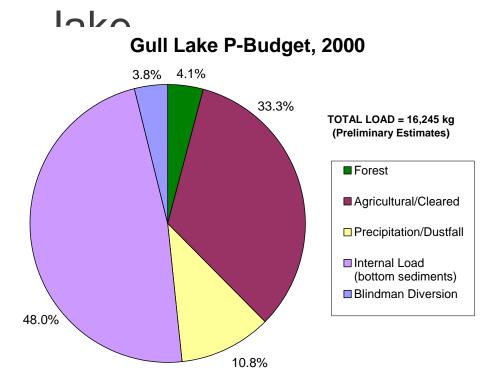
- Breakdown helps make decisions on managing expenses
- Sources.....and losses of money

Work

or

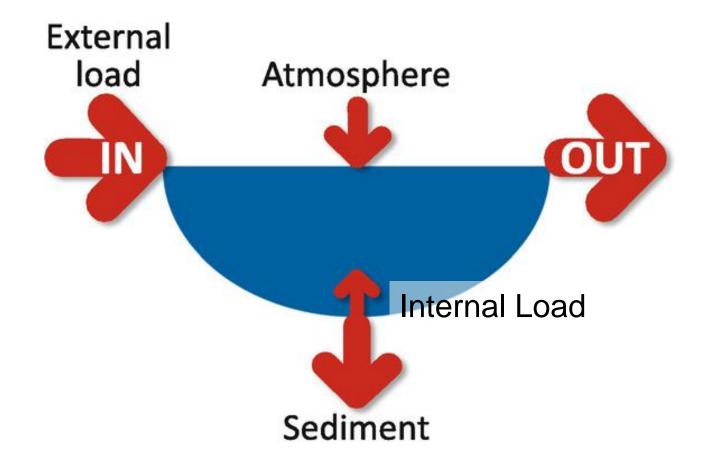
Lottery?!?

Poverty budget for Akron, Ohio: \$51,800

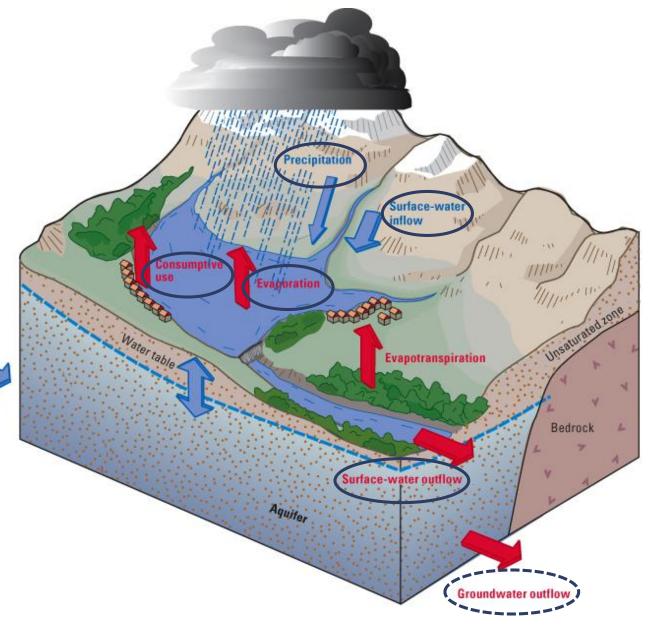

This Photo by Unknown Author is licensed under CC BY

Phosphorus Budget

 Breakdown helps make decisions on managing phosphorus that enters the lake and that algae use to bloom


Sources.....and losses of phosphorus to/from a

Phosphorus (P) Budget



Water Budget

Groundwater inflow

Measured
Calculated

External Sources of P

External Phosphorus Sources

Atmosphere

The state of the s

Arenadust.com

Forest

2dadstravel.com

Agriculture

agcanada.com

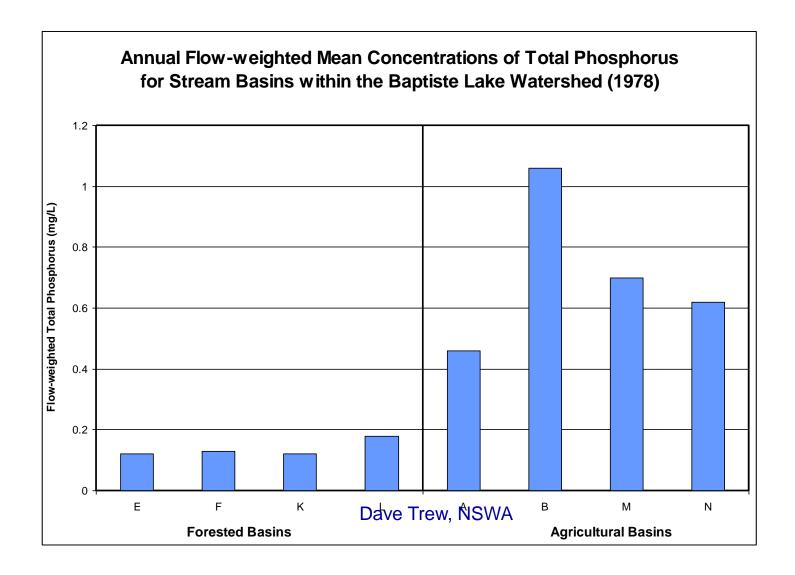
cattlefeeders.ca

Residential

Travelalberta.com

Waterfowl

Steinbachonline.com



How to Estimate External P Sources

- Watershed:
 - Export coefficients
 - Stream sampling (flow and water quality)
 - Watershed Modeling (e.g., ABMI P Runoff Model, SWAT)
- Groundwater: sampling and water budget
- Sewage, birds: estimates from literature, multiplied by population
- Atmospheric: measured or estimated

Stream Sampling Results Baptiste Lake

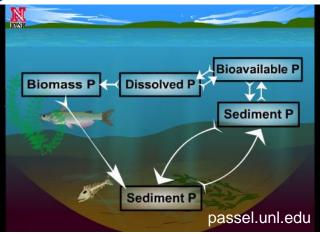
External P Load in AB Lakes

- Agricultural lands: largest loads
- Atmospheric load often important: (e.g., Pigeon: 20%)
- % of total load (D. Trew, Median of 1980-1990):

Precipitation	Agriculture	Forest
5%	6%	3%

ALMS 2013		Runoff (%)	tion (%)	ther (%)	age (%)	Diversions (%)	ter * (%)	(mg/L)
Alberta Lake	Time Period	Ru	Atmospheric Deposi	Sediments/0	Domestic Sewage (%	Divers	Ground-water * (%)	Mean Chlorophyll-a
Burnstick	1995	90	6	-	4	-	-	2.6
Gull	1999-00	31	11	52	7	-	-	7.5
Isle	1996	49	2	42	7	-	-	38.6
Lesser Slave	1991-93	28	7	65	-	-	-	40.3
Lower Mann	Various	12	1	69	18	-	-	96.5
Moose	Various	61	6	32	1	-	-	20.6
Pakowki	1996	9	2	90	-	-	-	34.6
Pine	1992	36	4	55	6	-	-	22.2
Ste. Anne	1996	36	4	55	5	-	-	43.8
Sandy	Various	21	6	73	1	-	-	82.5
Sylvan	2005	32	20	11	13	-	24	4.4
Thunder	1992-96	13	8	55	-	24	-	28.8
Upper Mann	Various	21	1	55	24	-	-	37.0
Wabamun	1980-82	23	13	55	1	6	2	11.3
Wabamun	2008	3	44	43	1	3	5	11.3
Wizard	Various	35	4	46	15	-	-	22.7
Mean	-	31	8	50	8	2	-	32.9

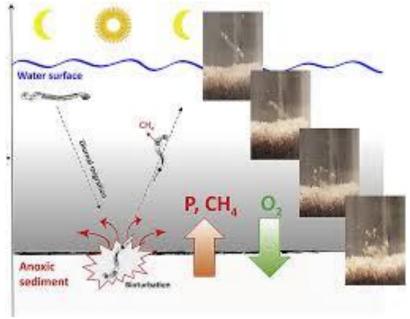
Internal Sources of P


In-Lake Sources

Sediment Release

Sediment Resuspension

Arne Diercks, ECOGIG, flickr.com



Attached algae, cyanobacteria

Bouma-Gregson et al. 2018, PLOS

Bioturbation

Tang et al. 2018, Water Research

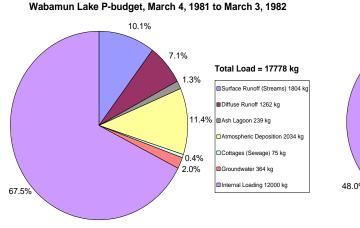

How to Estimate In-Lake P Sources

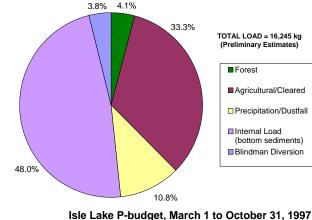
1) Mass Balance

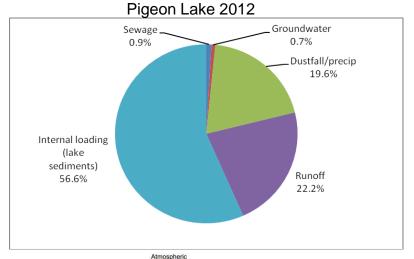
$$\Delta M = (I_R + I_P + I_G + I_A) - (O_G + O_D + O_O) - (LS)$$
 Mass change Inputs Outputs **Sediment Flux**

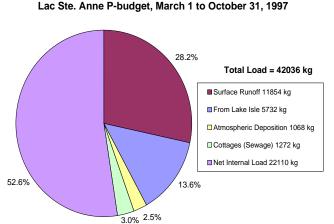
Most AB Data

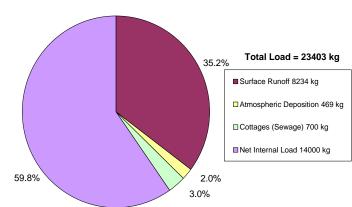
- 2) Model based on empirical data (after Nürnberg)
- 3) Release Experiments

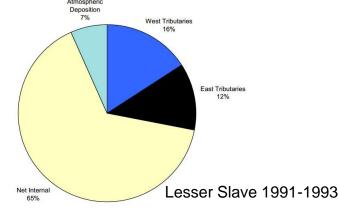



People.vcu.edu


Internal P load in AB Lakes


Median % of total load 1980-1990 (33 lakes): 82% (D. Trew)





Gull Lake P-Budget, 2000

Internal Load in Canadian Lakes (Orihel et al. 2017)

- Common phenomenon in Canadian freshwaters
- Highest rates under anoxia, at slightly elevated pH and in Prich lakes (hypertrophic)
- Prairie lakes have the largest internal load
- Climate change exacerbates internal load
- Relative importance of different internal load mechanisms poorly understood

INVITED REVIEW

Internal phosphorus loading in Canadian fresh waters: a critical review and data analysis

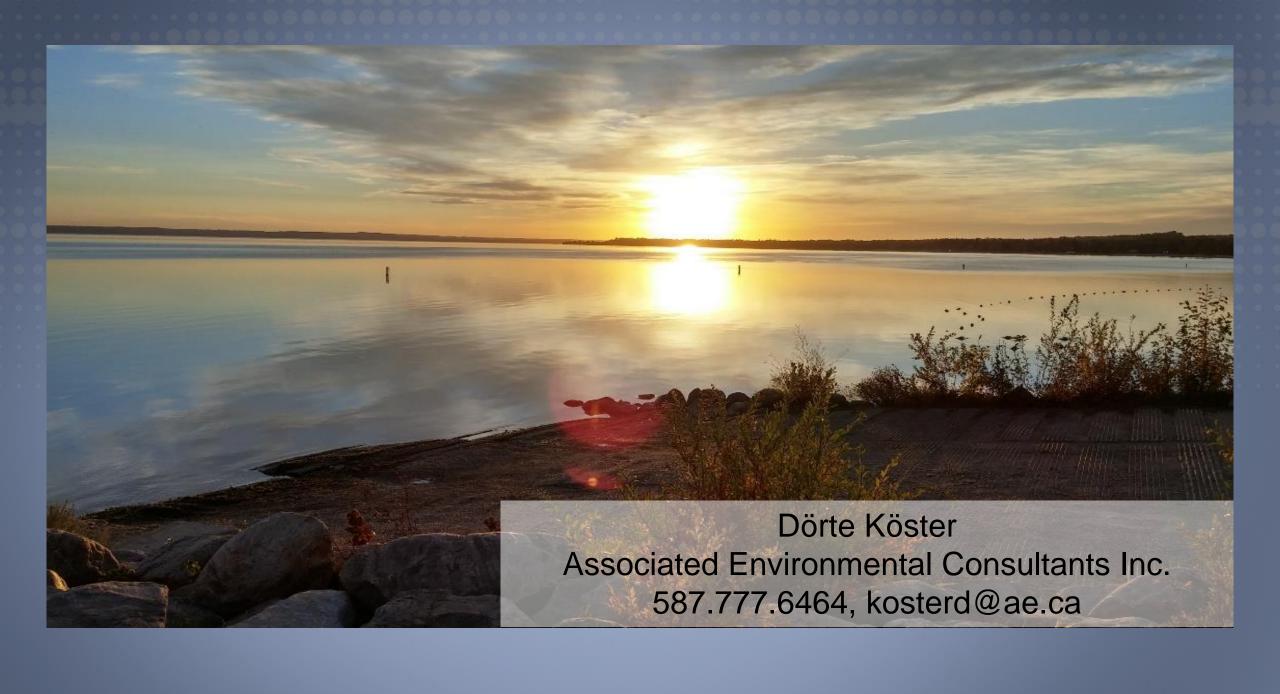
Diane M. Orihel, Helen M. Baulch, Nora J. Casson, Rebecca L. North, Chris T. Parsons, Dalila C.M. Seckar, and Jason J. Venkiteswaran

What does and what doesn't it tell us?

	What does it tell us?	What doesn't it tell us?
Phosphorus Budget	 Relative importance of different P sources 	 How nutrients move within lake Reason for individual algae blooms What portion of the P load is from human sources
Stream Sampling	 Seasonal P loads from sub- watersheds in sampling year(s) 	Where exactly in the watershed is the Phosphorus from?Storm event contribution
Export Coefficients	 Long-term average P load from runoff from land parcels 	What actually gets to the lakeWatershed specific load data
Mass Balance	Net P load from internal sources	 Gross internal load Contribution of sediment P release to algae blooms
Watershed Modeling	Seasonality and range of yearsSimulates land use scenarios	 Where exactly in the watershed is the Phosphorus from?

How can we improve P budgets?

- Keep sampling many lakes ⊕ (i.e., support ALMS!)
- Apply simplified watershed models to more lakes
- Study internal P load processes and their role in algae blooms in AB lakes
- Work with hydrologists to develop good water budgets
- Study groundwater contribution to lake water budgets
- Develop AB-specific lake models


How can P budgets inform lake management?

- Prioritize P sources for management
- Education
- Focus stewardship and education on key sources
- Provide confidence in decisions about lake and watershed management strategies
- Support land conservation efforts
- Support decisions on development applications

Without knowledge action is useless and knowledge without action is futile. Abu Bakr

