

Stepping Back from the Water Implementation

Jay S. White

M.Sc., P.Biol, QAES, Authenticating Professional

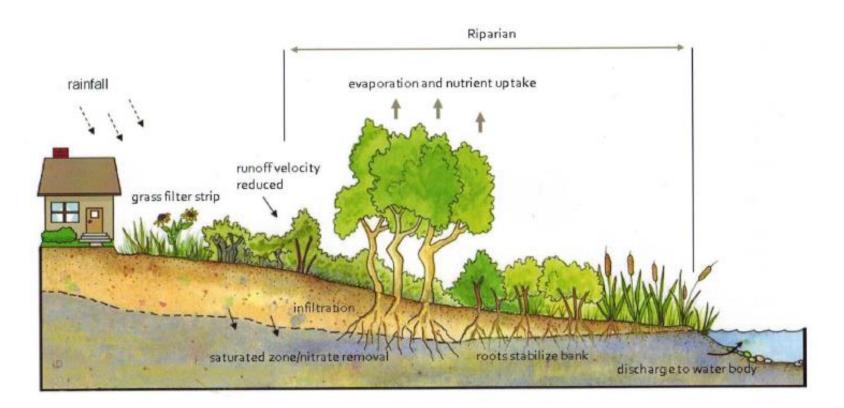
Aquality Environmental Consulting Ltd.

19 September 2019

What is Stepping Back?

- Released in 2012 by the Government of Alberta
- A handbook designed to guide and assist municipalities, watershed groups, developers and landowners in Alberta's settled region in determining appropriate setbacks and management practices for developing near water bodies
 - ➤ Minimizes impacts and risks associated with new development by allowing these groups to:
 - Identify riparian lands and understand their function
 - Understand how setbacks can be applied to create effective riparian buffers
 - Conserve and manage riparian land
 - Manage erosion and pollutants

Introduction


- Riparian areas are transition zones between land and water
 - ➤ Healthy riparian areas provide broad benefits (environmental, social, and economic)
 - Unique challenges in management
- Riparian Management is a shared responsibility
 - > Best tools fit local environmental, social, and economic conditions
- What is the purpose of Stepping Back From the Water?
 - > Education on the nature and function of riparian areas
 - Determining building setback widths and designing effective buffers
 - Only for new development adjacent to water bodies
 - > To present BMP recommendations and tools for managing riparian areas

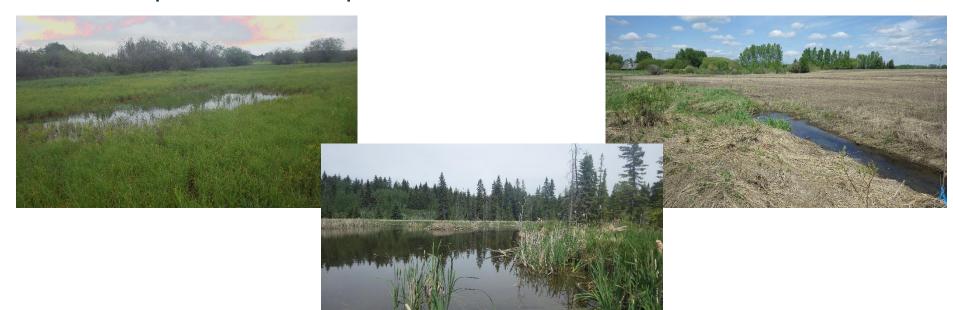
Riparian Areas

Figure 1
Illustration Showing a Riparian Area and Some of Its Interactions with Water

Why?

- Activities and disturbances impact riparian areas!
 - > Erosion and sedimentation
 - > Flooding
 - ➤ Slope failure
 - > Surface and groundwater pollution
 - > Loss of fish and wildlife habitat
- Stepping Back can help ensure adequate setbacks and erosion and pollutant management

How?


- Determination of filter strip width, unstable ground, erosion-prone areas, and flood plain
- Checklist:
 - 1. Define scenario
 - 2. Summarize key information
 - 3. Floodplain mapping
 - 4. Determine width of VFS
 - 5. Determine setbacks relative to site constraints
 - 6. Additional considerations

Waterbody Classification

- Permanent body of water vs. ephemeral/intermittent streams vs. non-permanent wetlands
- Different classes of water bodies have broadly different functions and requirements for protection

Flood Water Conveyance and Storage

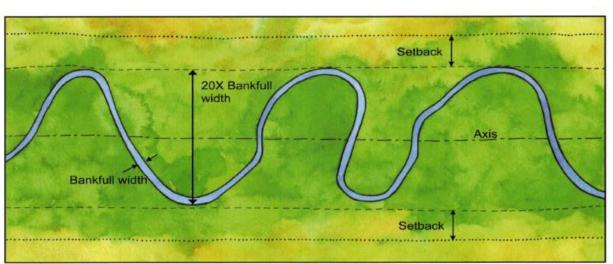
- Floodplains (Rivers and Streams)
 - > Floodway and flood fringe; 1:100 year floodplain
- Flood Levels (Lakes)
 - > 1:100 year level

Water Quality Functions

- Topography and Slope
 - > From legal bank to adjacent uplands
- Parent Material
 - Glacial till or water/wind deposited
- Groundwater
 - Surficial or alluvial aquifers
 - ➤ Shallow groundwater (<1.8m)
 - Springs and seeps

Bank/Shoreline Stability

- Erosion Prone Lands/Undercut Banks
 - > Highly erodible soils and areas of channel migration
- Sloping Ground
 - ➤ Slopes >25%
- Unstable Ground
 - Steep bank edges, near seeps/springs



- Active channels
 - > Use width of meander belt
 - > Setbacks measured from edge of meander belt
- Fish bearing channels
 - ➤ Minimum 30m buffer

Figure 2 Schematic Diagram of a Meander Belt

Recommended Data (additional considerations)

Habitat and Biodiversity

- Environmentally Significant Areas (ESAs)
 - ➤ May include riparian areas of major rivers
- Wildlife Sensitivity Maps
 - Migration corridors, summer/winter ranges, nesting or birthing sites, species at risk ranges, sensitive amphibian ranges

Recommended Data (additional considerations)

Habitat/Biodiversity

- Rare Species
 - > Species at risk that use riparian areas (N. leopard frog, peregrine falcon, prairie falcon, bald eagle, great blue heron, etc.)
- Vegetation
 - Cover type and composition (discussed but not addressed directly by original document)

Width (metres)

20

10

33

Figure 3

A lake or wetland buffer on glacial till, comprised of a vegetated filter strip (VFS), and setback for shallow groundwater.

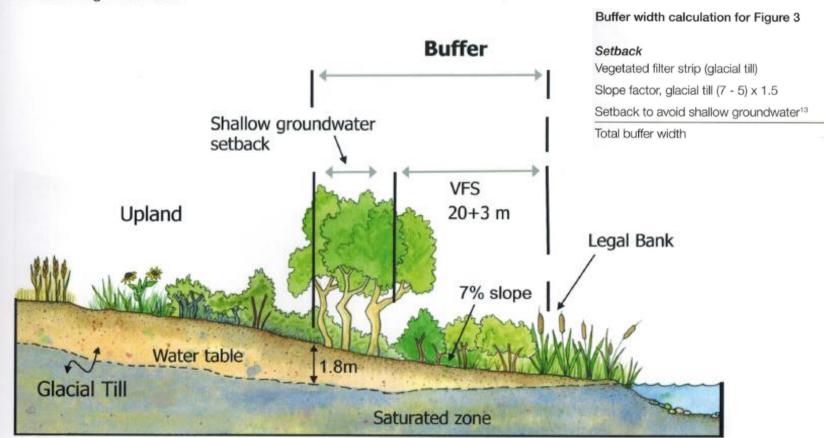
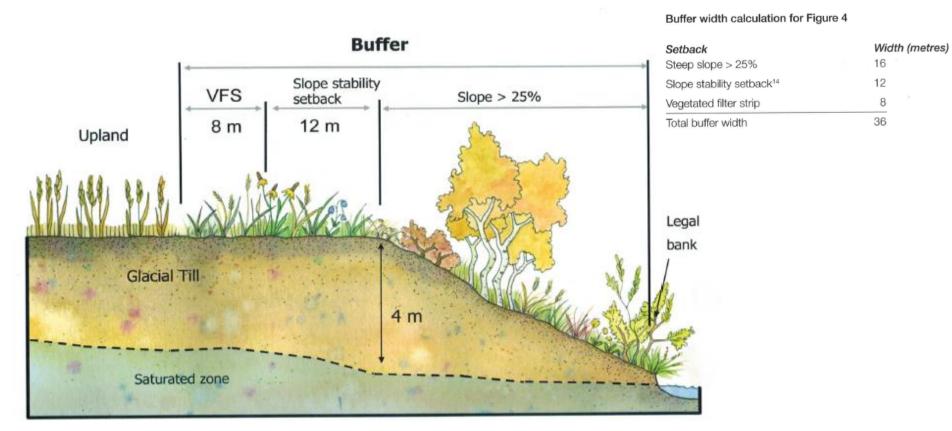
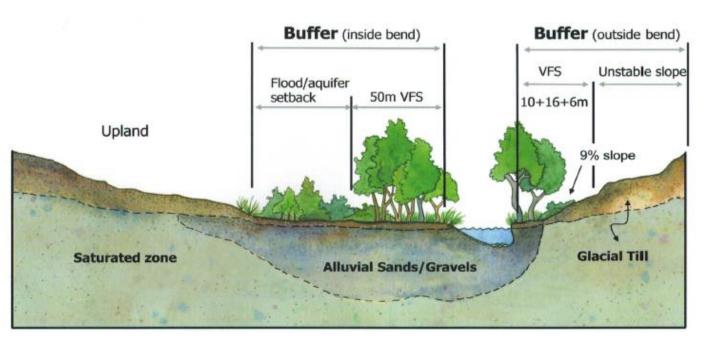
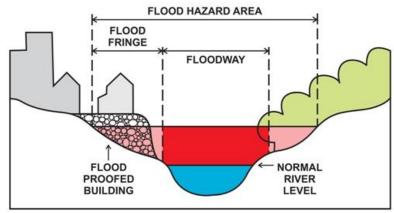
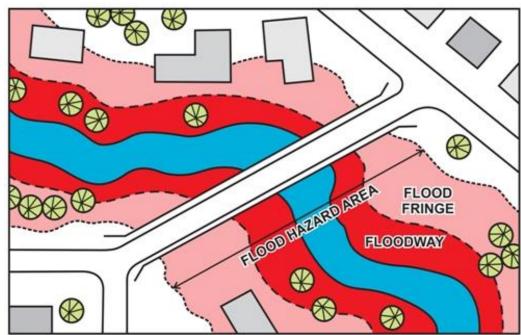


Figure 4

A stream buffer on glacial till, comprised of a steep slope, slope stability setback, and a vegetated filter strip. The steep slope does not count toward the vegetated filter strip.


Figure 5
River buffers on glacial till and alluvial sands/gravels, comprised of vegetated filter strips, a flood/aquifer setback, and a slope stability setback.



Buffer width calculation for Figure 5		Setback (Outside Bend)	Width (metres)
		Vegetated filter strip (alluvium)	10
Setback (Inside Bend)	Width (metres)	Vegetated filter strip (glacial till, Table 4)	16
Vegetated filter strip (alluvium)	50	Slope factor, glacial till (9% - 5%) x 1.5	6
Flood/aquifer setback (site dependent)	50	Unstable slope setback (site dependent)	20
Total buffer width	100	Total buffer width	52

Important in urban areas too!

Issues with implementation

- The original document takes a narrative approach rather than workflow to determining setbacks
- Some implementation details are not clear from text
 - ➤ Can largely be reverse engineered from text and examples, though some details are open to interpretation
- Examples don't provide full range of scenarios for exploring potential setback requirements

Updates from current project

- Development of toolkit including workflow documents detailing approach
 - > Detailed implementation, but somewhat unwieldy for quick assessments
 - > Explanations of requirements for end-users to improve familiarity with approach
- Web application
 - Minimal implementation
 - ➤ Good for determining setbacks when parameters and model implementation are already well understood by user

Web Application

- http://webapps.aquality.ca/apps/steppingback/
- Application takes user input to determine recommended setback for site
- Does not account for e.g. environmentally significant areas or rare/sensitive species
 - > Requires site-by-site determination based on expert knowledge
 - May not require changes to setbacks but rather

Conclusions

- Riparian areas are important!
- Stepping Back from the Water provides guidelines on determining appropriate setbacks
- Help to balance environmental, social, and economic pressures
- Current project focuses on increasing utility and approachability to improve rate of implementation

