
Multi-scale Drivers of 
Phytoplankton Communities in 

North-temperate Lakes

Ron Zurawell & Charlie Loewen, Science Branch, AEP

ALMS Workshop

Sept 19th, 2019



Lake ecosystems as sentinels of change

2

Local 
disturbance

Regional 
land-use

Climate 
conditions

Spatial scale

• Discrete systems with distinct boundaries

• Intrinsically connected to local and regional processes and conditions by the 
down-gradient flow of water

• Integrate multiple stressors across space and time 

• Model systems for understanding macroecological response



Phytoplankton and freshwater management
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• Responsive bio-indicators at the base of aquatic food webs

– Harmful algal/cyanobacterial blooms and declining ecosystem health

• Trait response to environmental gradients offers mechanistic 
insights into community assembly
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Part 1: The use of spatially-constrained null-models to 
disentangle the relative influence of co-occurring, multiscale 

drivers of phytoplankton communities in north-temperate 
lakes and reservoirs across Alberta, Canada.

Part 1: Identify most relevant factors explaining variation in 
phytoplankton (and cyanobacteria) communities to reduce 
number of variables required for subsequent analysis (Part 2)

Part 2: The use RLQ/fourth-corner analysis to
identify seasonal trait-environment associations of 

phytoplankton communities in AB’s north-temperate lakes 
and reservoirs.



Lake monitoring data

– AEP’s Lake Network & ALMS’ Lakewatch 
program

– Phytoplankton community biomass 
composition

– 75 lakes and reservoirs sampled (2011–
2017)

– Monthly open-water sampling (June–
September)

– 304 phytoplankton taxa 
(61cCyanobacteria species )

– Diverse natural regions and human-
footprint



Hierarchy of environmental factors
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Local factors Regional factors

Alkalinity (as total CaCO3) Lake area-perimeter ratio Catchment are Air temperature (monthly)

Bicarbonate (calculated) Lake elevation Mean catchment slope Air temperature (spring)

Calcium Calcium (dissolved) Lake/reservoir % Canal/drainage Solar radiation (monthly)

Carbonate (calculated) Max depth % Cleared land Total precipitation (monthly)

Chloride (dissolved) Secchi depth % Cropland

Hardness (as total CaCO3) Sum buoyancy frequency % Grassland

Magnesium (dissolved) Surface water temperature % Hard linear features

Nitrogen (total) % Harvested forest

pH % Intact forest

Phosphorus (total) % Pastureland 

Potassium (dissolved) % Soft linear features

Silica (reactive) % Urban/industrial

Sodium (dissolved) % Wetlands

Sulphate (dissolved) Watercourse crossing density

Total dissolved solids



Water chemistry
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Local factors Regional factors

Alkalinity (as total CaCO3) Lake area-perimeter ratio Catchment are Air temperature (monthly)

Bicarbonate (calculated) Lake elevation Mean catchment slope Air temperature (spring)

Calcium Calcium (dissolved) Lake/reservoir % Canal/drainage Solar radiation (monthly)

Carbonate (calculated) Max depth % Cleared land Total precipitation (monthly)

Chloride (dissolved) Secchi depth % Cropland

Hardness (as total CaCO3) Sum buoyancy frequency % Grassland

Magnesium (dissolved) Surface water temperature % Hard linear features

Nitrogen (total) % Harvested forest

pH % Intact forest

Phosphorus (total) % Pastureland 

Potassium (dissolved) % Soft linear features

Silica (reactive) % Urban/industrial

Sodium (dissolved) % Wetlands

Sulphate (dissolved) Watercourse crossing density

Total dissolved solids



Morphometry and physical parameters
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Local factors Regional factors

Alkalinity (as total CaCO3) Lake area-perimeter ratio Catchment are Air temperature (monthly)

Bicarbonate (calculated) Lake elevation (altitude) Mean catchment slope Air temperature (spring)

Calcium Calcium (dissolved) Lake/reservoir % Canal/drainage Solar radiation (monthly)

Carbonate (calculated) Max depth % Cleared land Total precipitation (monthly)

Chloride (dissolved) Secchi depth % Cropland

Hardness (as total CaCO3) Sum buoyancy frequency % Grassland

Magnesium (dissolved) Surface water temperature % Hard linear features

Nitrogen (total) % Harvested forest

pH % Intact forest

Phosphorus (total) % Pastureland 

Potassium (dissolved) % Soft linear features

Silica (reactive) % Urban/industrial

Sodium (dissolved) % Wetlands

Sulphate (dissolved) Watercourse crossing density

Total dissolved solids



Catchment land-cover and human-footprint
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Local factors Regional factors

Alkalinity (as total CaCO3) Lake area-perimeter ratio Catchment are Air temperature (monthly)

Bicarbonate (calculated) Lake elevation Mean catchment slope Air temperature (spring)

Calcium Calcium (dissolved) Lake/reservoir % Canal/drainage Solar radiation (monthly)

Carbonate (calculated) Max depth % Cleared land Total precipitation (monthly)

Chloride (dissolved) Secchi depth % Cropland

Hardness (as total CaCO3) Sum buoyancy frequency % Grassland

Magnesium (dissolved) Surface water temperature % Hard linear features

Nitrogen (total) % Harvested forest

pH % Intact forest

Phosphorus (total) % Pastureland 

Potassium (dissolved) % Soft linear features

Silica (reactive) % Urban/industrial

Sodium (dissolved) % Wetlands

Sulphate (dissolved) Watercourse crossing density

Total dissolved solids



Atmospheric climate conditions
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Local factors Regional factors

Alkalinity (as total CaCO3) Lake area-perimeter ratio Catchment are Air temperature (monthly)

Bicarbonate (calculated) Lake elevation Mean catchment slope Air temperature (spring)

Calcium Calcium (dissolved) Lake/reservoir % Canal/drainage Solar radiation (monthly)

Carbonate (calculated) Max depth % Cleared land Total precipitation (monthly)

Chloride (dissolved) Secchi depth % Cropland

Hardness (as total CaCO3) Sum buoyancy frequency % Grassland

Magnesium (dissolved) Surface water temperature % Hard linear features

Nitrogen (total) % Harvested forest

pH % Intact forest

Phosphorus (total) % Pastureland 

Potassium (dissolved) % Soft linear features

Silica (reactive) % Urban/industrial

Sodium (dissolved) % Wetlands

Sulphate (dissolved) Watercourse crossing density

Total dissolved solids



The challenge: spatial autocorrelation
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Spatially-correlated responses along biogeographic/environmental gradients

–Failure to meet assumption of independence (inflation of Type I statistical error)

– Is variation due to: Environmental factors? Spatial factors? Shared Environmental-
Spatial factors? Or purely Spurious correlation due to stochastic (random) 
processes?

Confounds interpretation of results 

– If ignored: risk of type I statistical error (i.e. falsely assume environment induced)

– If controlled by partial analysis risk of type II error (i.e. falsely assumed spurious)

Peres-Neto, Legendre, Dray, and Borcard. 2006. Ecology

Spatially-
independent 

Environmental 
variation

Spatially-
dependent 

Environmental 
variation

Spatial 
variation

Unexplained
(residual)
variationStochastic (random) 

processes
Spurious correlations



Spatially-constrained null model approach
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Moran’s spectral randomization for irregularly spaced data
– Wagner & Dray (2015) adapted by Clappe, Dray, and Peres-Neto (2018)

– Allows for estimation/adjustment of spuriously correlated portion of 
overlapping variation (fraction “b”)



Local vs. Regional vs. Space
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Ranking individual factors

• Local factors (blue); Regional 
factors (yellow)

• Adjusting for significant spatial 
autocorrelation in July and 
August only
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Nutrients reign

• Phosphorous and nitrogen lead 
for Phytoplankton overall

• Phosphorus but NOT nitrogen 
important for cyanobacteria

• Both nutrients become 
increasingly important over 
summer

TP

TN

Phytoplankton Cyanobacteria
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Connection to agriculture

• Pasture was top land-use 
factor for overall 
phytoplankton community

• Cropland top land-use for 
cyanobacteria

– Both covary with nutrient 
concentrations

Pasture

Crop

Phytoplankton Cyanobacteria
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Early-season climate

• Solar radiation and spring air 
temperature most important 
for June communities

– Decreasing importance over 
summer

Solar
radiation

Spring
air temp

Phytoplankton Cyanobacteria
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Lake/Reservoir Class

• Negligible difference between 
natural and constructed 
waterbodies

• Reservoirs naturalized rapidly

Lake/
Res.

Phytoplankton Cyanobacteria



Linking environment to species’ traits
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Environmental variables Trait variables

Air temperature (monthly) Max depth Buoyancy regulating 

Air temperature (spring) Mean catchment slope Greatest axial length

Alkalinity (as total CaCO3) Nitrogen (total) Nitrogen-fixing

Bicarbonate (calculated) Pastureland Silica-requirement

Calcium (dissolved) pH Flagellar motility

Canal/drainage Phosphorus (total) Heterotrophy

Cleared land Secchi Depth Phycobilins producing

Cropland Silica (reactive) Chlorophyll c producing

Forest intact Sodium (dissolved) Chlorophyll b producing

Forest harvested Solar radiation (monthly) Chain/colony forming

Grassland Sum buoyancy frequency Mucilaginous sheaths 

Hardness (as total CaCO3) Surface water temperature Spine/pole producing 

Lake area-perimeter ratio Total dissolved solids Toxin producing

Lake elevation Watercourse crossing density

Lake/reservoir Wetlands

Magnesium (dissolved)

Species

Si
te

s
Tr

ai
ts

Environment

Correspondence
Analysis

Principal
Components

Analysis

Principal
Components 

Analysis

Co-inertia
Analysis

L R

Q

Peering into the fourth-corner with RLQ



RLQ Results: 
Dominant trait-environment 
associations over time

June July August September



Fourth-corner analysis
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Determine individual trait-
environment associations

– Moran’s spectral randomization

– Spatially and phylogenetically-
constrained analysis

Optimized phylogenetic 
eigenvector maps based on 
topology of taxonomic tree
– Significant phylogenetic 

autocorrelation found in July and 
August 



Significant relationships in Aggregate

Chlorophyll b (+) Spring air temperature

Chlorophyll b (+) Nitrogen

Chlorophyll b (-) Secchi depth

Presumptive toxin producing (+) Surface water 
temperature

Presumptive toxin producing (-) Elevation

Presumptive toxin producing (-) Secchi depth



Significant relationships in June

Presumptive toxin producing (+) Lake A:P

Presumptive toxin producing (+) pH

Presumptive toxin producing (-) Max depth

Presumptive toxin producing (-) Elevation

Chlorophyll b (+) pH

Chlorophyll b (+) Nitrogen

Chlorophyll b (+) Silica

Chlorophyll b (-) Logged (harvested forest)

Chlorophyll b (-) Max depth

Spines (+) Max depth



Significant relationships in July

Heterotrophy (+) Secchi depth

Heterotrophy (-) pH

Heterotrophy (-) Bicarbonate

Chlorophyll c (+) Secchi depth

Chlorophyll c (+) Elevation

Chlorophyll c (-) Pastureland

Chlorophyll c (-) pH

Chlorophyll c (-) Bicarbonate

Buoyancy regulation (-) Elevation

Buoyancy regulation (-) Solar radiation

Presumptive toxin producing (-) Elevation

Presumptive toxin producing (-) Solar 
radiation

Colonial (+) pH

Colonial (+) Bicarbonate

Colonial (-) Crossings

Colonial (-) Secchi depth



Significant relationships in August

Heterotrophy (+) Logged (harvested forest)

Heterotrophy (+) Secchi depth

Heterotrophy (-) pH

Nitrogen fixation (-) Elevation

Presumptive toxin producing (-) Elevation



Significant relationships in September

Flagellar motility (+) Elevation

Flagellar motility (+) Secchi depth

Flagellar motility (-) Nitrogen

Flagellar motility (-) pH

Chlorophyll b (+) Nitrogen

Chlorophyll b (-) Secchi depth

Presumptive toxin producing (+) pH

Presumptive toxin producing (-) Elevation

Presumptive toxin producing (-) Secchi depth



Summary
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• Despite broad biogeographic gradients, communities showed little spatial 
autocorrelation—environmental associations were independent of space 
(except July and August)

• Seasonal differences in the influence of environmental factors on 
phytoplankton (and cyano) diversity exists—local (in-lake) factors better 
explained taxonomic variation especially as growing season progressed

— Regional factors (eg. solar radiation, spring air temp) most important in early 
growing season only

— Nutrients and land-use relating to nutrient export key factors 

• Local and regional factors were more complementary for seasonally 
aggregated data—highlight importance of collecting data over the entire 
growing season

• Phytoplankton and cyanobacteria communities of reservoirs appear similar 
to natural lakes—indicating rapid naturalization of reservoirs



Summary cont’d
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• Differing drivers for toxin vs. chlorophyll-b producers

• Toxin under warm, low elevation (solar radiation), and high pH

• Chlorophyll-b under high nitrogen and smaller logging footprints

• Phytoplankton trait-environment associations offer 
mechanistic insights

• Natural/anthropogenic associations generate hypotheses
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