# Multi-scale Drivers of Phytoplankton Communities in North-temperate Lakes

Ron Zurawell & Charlie Loewen, Science Branch, AEP

ALMS Workshop Sept 19<sup>th</sup>, 2<u>019</u>



#### Lake ecosystems as sentinels of change

- Discrete systems with distinct boundaries
- Intrinsically connected to local and regional processes and conditions by the down-gradient flow of water
- Integrate multiple stressors across space and time
- Model systems for understanding macroecological response



#### Phytoplankton and freshwater management

- Responsive bio-indicators at the base of aquatic food webs
  - Harmful algal/cyanobacterial blooms and declining ecosystem health
- Trait response to environmental gradients offers mechanistic insights into community assembly









Part 1: The use of spatially-constrained null-models to disentangle the relative influence of co-occurring, multiscale drivers of phytoplankton communities in north-temperate lakes and reservoirs across Alberta, Canada.

Part 1: Identify most relevant factors explaining variation in phytoplankton (and cyanobacteria) communities to reduce number of variables required for subsequent analysis (Part 2)

Part 2: The use RLQ/fourth-corner analysis to identify seasonal trait-environment associations of phytoplankton communities in AB's north-temperate lakes and reservoirs.

Alberta

#### Lake monitoring data

- AEP's Lake Network & ALMS' Lakewatch program
- Phytoplankton community biomass composition
- 75 lakes and reservoirs sampled (2011–2017)
- Monthly open-water sampling (June– September)
- 304 phytoplankton taxa (61cCyanobacteria species)
- Diverse natural regions and humanfootprint



# Hierarchy of environmental factors

| Local factors                            |                           | Regional factors             |                               |
|------------------------------------------|---------------------------|------------------------------|-------------------------------|
| Alkalinity (as total CaCO <sub>3</sub> ) | Lake area-perimeter ratio | Catchment are                | Air temperature (monthly)     |
| Bicarbonate (calculated)                 | Lake elevation            | Mean catchment slope         | Air temperature (spring)      |
| Calcium Calcium (dissolved)              | Lake/reservoir            | % Canal/drainage             | Solar radiation (monthly)     |
| Carbonate (calculated)                   | Max depth                 | % Cleared land               | Total precipitation (monthly) |
| Chloride (dissolved)                     | Secchi depth              | % Cropland                   |                               |
| Hardness (as total CaCO <sub>3</sub> )   | Sum buoyancy frequency    | % Grassland                  |                               |
| Magnesium (dissolved)                    | Surface water temperature | % Hard linear features       |                               |
| Nitrogen (total)                         |                           | % Harvested forest           |                               |
| рН                                       |                           | % Intact forest              |                               |
| Phosphorus (total)                       |                           | % Pastureland                |                               |
| Potassium (dissolved)                    |                           | % Soft linear features       |                               |
| Silica (reactive)                        |                           | % Urban/industrial           |                               |
| Sodium (dissolved)                       |                           | % Wetlands                   |                               |
| Sulphate (dissolved)                     |                           | Watercourse crossing density |                               |
| Total dissolved solids                   |                           |                              |                               |



# Water chemistry

| Local factors                            |                           | Regional factors             |                               |
|------------------------------------------|---------------------------|------------------------------|-------------------------------|
| Alkalinity (as total CaCO <sub>3</sub> ) | Lake area-perimeter ratio | Catchment are                | Air temperature (monthly)     |
| Bicarbonate (calculated)                 | Lake elevation            | Mean catchment slope         | Air temperature (spring)      |
| Calcium Calcium (dissolved)              | Lake/reservoir            | % Canal/drainage             | Solar radiation (monthly)     |
| Carbonate (calculated)                   | Max depth                 | % Cleared land               | Total precipitation (monthly) |
| Chloride (dissolved)                     | Secchi depth              | % Cropland                   |                               |
| Hardness (as total CaCO <sub>3</sub> )   | Sum buoyancy frequency    | % Grassland                  |                               |
| Magnesium (dissolved)                    | Surface water temperature | % Hard linear features       |                               |
| Nitrogen (total)                         |                           | % Harvested forest           |                               |
| рН                                       |                           | % Intact forest              |                               |
| Phosphorus (total)                       |                           | % Pastureland                |                               |
| Potassium (dissolved)                    |                           | % Soft linear features       |                               |
| Silica (reactive)                        |                           | % Urban/industrial           |                               |
| Sodium (dissolved)                       |                           | % Wetlands                   |                               |
| Sulphate (dissolved)                     |                           | Watercourse crossing density |                               |
| Total dissolved solids                   |                           |                              |                               |



# Morphometry and physical parameters

| Local factors                            |                           | Regional factors             |                               |
|------------------------------------------|---------------------------|------------------------------|-------------------------------|
| Alkalinity (as total CaCO <sub>3</sub> ) | Lake area-perimeter ratio | Catchment are                | Air temperature (monthly)     |
| Bicarbonate (calculated)                 | Lake elevation (altitude) | Mean catchment slope         | Air temperature (spring)      |
| Calcium Calcium (dissolved)              | Lake/reservoir            | % Canal/drainage             | Solar radiation (monthly)     |
| Carbonate (calculated)                   | Max depth                 | % Cleared land               | Total precipitation (monthly) |
| Chloride (dissolved)                     | Secchi depth              | % Cropland                   |                               |
| Hardness (as total CaCO <sub>3</sub> )   | Sum buoyancy frequency    | % Grassland                  |                               |
| Magnesium (dissolved)                    | Surface water temperature | % Hard linear features       |                               |
| Nitrogen (total)                         |                           | % Harvested forest           |                               |
| рН                                       |                           | % Intact forest              |                               |
| Phosphorus (total)                       |                           | % Pastureland                |                               |
| Potassium (dissolved)                    |                           | % Soft linear features       |                               |
| Silica (reactive)                        |                           | % Urban/industrial           |                               |
| Sodium (dissolved)                       |                           | % Wetlands                   |                               |
| Sulphate (dissolved)                     |                           | Watercourse crossing density |                               |
| Total dissolved solids                   |                           |                              |                               |



# Catchment land-cover and human-footprint

| Local factors                            |                           | Regional factors             |                               |
|------------------------------------------|---------------------------|------------------------------|-------------------------------|
| Alkalinity (as total CaCO <sub>3</sub> ) | Lake area-perimeter ratio | Catchment are                | Air temperature (monthly)     |
| Bicarbonate (calculated)                 | Lake elevation            | Mean catchment slope         | Air temperature (spring)      |
| Calcium Calcium (dissolved)              | Lake/reservoir            | % Canal/drainage             | Solar radiation (monthly)     |
| Carbonate (calculated)                   | Max depth                 | % Cleared land               | Total precipitation (monthly) |
| Chloride (dissolved)                     | Secchi depth              | % Cropland                   |                               |
| Hardness (as total CaCO <sub>3</sub> )   | Sum buoyancy frequency    | % Grassland                  |                               |
| Magnesium (dissolved)                    | Surface water temperature | % Hard linear features       |                               |
| Nitrogen (total)                         |                           | % Harvested forest           |                               |
| рН                                       |                           | % Intact forest              |                               |
| Phosphorus (total)                       |                           | % Pastureland                |                               |
| Potassium (dissolved)                    |                           | % Soft linear features       |                               |
| Silica (reactive)                        |                           | % Urban/industrial           |                               |
| Sodium (dissolved)                       |                           | % Wetlands                   |                               |
| Sulphate (dissolved)                     |                           | Watercourse crossing density |                               |
| Total dissolved solids                   |                           |                              |                               |



# Atmospheric climate conditions

| Local factors                            |                           | Regional factors             |                               |
|------------------------------------------|---------------------------|------------------------------|-------------------------------|
| Alkalinity (as total CaCO <sub>3</sub> ) | Lake area-perimeter ratio | Catchment are                | Air temperature (monthly)     |
| Bicarbonate (calculated)                 | Lake elevation            | Mean catchment slope         | Air temperature (spring)      |
| Calcium Calcium (dissolved)              | Lake/reservoir            | % Canal/drainage             | Solar radiation (monthly)     |
| Carbonate (calculated)                   | Max depth                 | % Cleared land               | Total precipitation (monthly) |
| Chloride (dissolved)                     | Secchi depth              | % Cropland                   |                               |
| Hardness (as total CaCO <sub>3</sub> )   | Sum buoyancy frequency    | % Grassland                  |                               |
| Magnesium (dissolved)                    | Surface water temperature | % Hard linear features       |                               |
| Nitrogen (total)                         |                           | % Harvested forest           |                               |
| рН                                       |                           | % Intact forest              |                               |
| Phosphorus (total)                       |                           | % Pastureland                |                               |
| Potassium (dissolved)                    |                           | % Soft linear features       |                               |
| Silica (reactive)                        |                           | % Urban/industrial           |                               |
| Sodium (dissolved)                       |                           | % Wetlands                   |                               |
| Sulphate (dissolved)                     |                           | Watercourse crossing density |                               |
| Total dissolved solids                   |                           |                              |                               |



#### The challenge: spatial autocorrelation

#### Spatially-correlated responses along biogeographic/environmental gradients

- -Failure to meet assumption of independence (inflation of Type I statistical error)
- —Is variation due to: Environmental factors? Spatial factors? Shared Environmental-Spatial factors? Or purely Spurious correlation due to stochastic (random) processes?

#### Confounds interpretation of results

- -If ignored: risk of type I statistical error (i.e. falsely assume environment induced)
- —If controlled by partial analysis risk of type II error (i.e. falsely assumed spurious)





#### Spatially-constrained null model approach

#### Moran's spectral randomization for irregularly spaced data

- Wagner & Dray (2015) adapted by Clappe, Dray, and Peres-Neto (2018)
- Allows for estimation/adjustment of spuriously correlated portion of overlapping variation (fraction "b")



### Local vs. Regional vs. Space







#### Ranking individual factors

- Local factors (blue); Regional factors (yellow)
- Adjusting for significant spatial autocorrelation in July and August only





#### Nutrients reign

- Phosphorous and nitrogen lead for Phytoplankton overall
- Phosphorus but NOT nitrogen important for cyanobacteria
- Both nutrients become increasingly important over summer







#### Connection to agriculture

- Pasture was top land-use factor for overall phytoplankton community
- Cropland top land-use for cyanobacteria
- Both covary with nutrient concentrations







#### Early-season climate

- Solar radiation and spring air temperature most important for June communities
- Decreasing importance over summer







#### Lake/Reservoir Class

- Negligible difference between natural and constructed waterbodies
- Reservoirs naturalized rapidly





### Linking environment to species' traits

#### Peering into the fourth-corner with RLQ

| Environme                                | ental variables              | Trait variables         |
|------------------------------------------|------------------------------|-------------------------|
| Air temperature (monthly)                | Max depth                    | Buoyancy regulating     |
| Air temperature (spring)                 | Mean catchment slope         | Greatest axial length   |
| Alkalinity (as total CaCO <sub>3</sub> ) | Nitrogen (total)             | Nitrogen-fixing         |
| Bicarbonate (calculated)                 | Pastureland                  | Silica-requirement      |
| Calcium (dissolved)                      | рН                           | Flagellar motility      |
| Canal/drainage                           | Phosphorus (total)           | Heterotrophy            |
| Cleared land                             | Secchi Depth                 | Phycobilins producing   |
| Cropland                                 | Silica (reactive)            | Chlorophyll c producing |
| Forest intact                            | Sodium (dissolved)           | Chlorophyll b producing |
| Forest harvested                         | Solar radiation (monthly)    | Chain/colony forming    |
| Grassland                                | Sum buoyancy frequency       | Mucilaginous sheaths    |
| Hardness (as total CaCO3)                | Surface water temperature    | Spine/pole producing    |
| Lake area-perimeter ratio                | Total dissolved solids       | Toxin producing         |
| Lake elevation                           | Watercourse crossing density |                         |
| Lake/reservoir                           | Wetlands                     |                         |
| Magnesium (dissolved)                    |                              |                         |





#### **RLQ Results:**

# Dominant trait-environment associations over time





June



July



**August** 



#### Fourth-corner analysis

#### Determine individual traitenvironment associations

- Moran's spectral randomization
- Spatially and phylogeneticallyconstrained analysis

Optimized phylogenetic eigenvector maps based on topology of taxonomic tree

 Significant phylogenetic autocorrelation found in July and August



### Significant relationships in Aggregate



Chlorophyll b (+) Spring air temperature Chlorophyll b (+) Nitrogen Chlorophyll b (-) Secchi depth

Presumptive toxin producing (+) Surface water temperature

Presumptive toxin producing (-) Elevation

Presumptive toxin producing (-) Secchi depth

#### Significant relationships in June



Presumptive toxin producing (+) Lake A:P
Presumptive toxin producing (+) pH
Presumptive toxin producing (-) Max depth
Presumptive toxin producing (-) Elevation

Chlorophyll b (+) pH
Chlorophyll b (+) Nitrogen
Chlorophyll b (+) Silica
Chlorophyll b (-) Logged (harvested forest)
Chlorophyll b (-) Max depth

Spines (+) Max depth

### Significant relationships in July



Colonial (+) pH
Colonial (+) Bicarbonate
Colonial (-) Crossings
Colonial (-) Secchi depth

Heterotrophy (+) Secchi depth Heterotrophy (-) pH Heterotrophy (-) Bicarbonate

Chlorophyll c (+) Secchi depth Chlorophyll c (+) Elevation Chlorophyll c (-) Pastureland Chlorophyll c (-) pH Chlorophyll c (-) Bicarbonate

Buoyancy regulation (-) Elevation Buoyancy regulation (-) Solar radiation

Presumptive toxin producing (-) Elevation Presumptive toxin producing (-) Solar radiation

### Significant relationships in August



Heterotrophy (+) Logged (harvested forest) Heterotrophy (+) Secchi depth Heterotrophy (-) pH

Nitrogen fixation (-) Elevation

Presumptive toxin producing (-) Elevation

#### Significant relationships in September



Flagellar motility (+) Elevation
Flagellar motility (+) Secchi depth
Flagellar motility (-) Nitrogen
Flagellar motility (-) pH

Chlorophyll b (+) Nitrogen Chlorophyll b (-) Secchi depth

Presumptive toxin producing (+) pH
Presumptive toxin producing (-) Elevation
Presumptive toxin producing (-) Secchi depth

# Summary

- Despite broad biogeographic gradients, communities showed little spatial autocorrelation—environmental associations were independent of space (except July and August)
- Seasonal differences in the influence of environmental factors on phytoplankton (and cyano) diversity exists—local (in-lake) factors better explained taxonomic variation especially as growing season progressed
  - Regional factors (eg. solar radiation, spring air temp) most important in early growing season only
  - Nutrients and land-use relating to nutrient export key factors
- Local and regional factors were more complementary for seasonally aggregated data—highlight importance of collecting data over the entire growing season
- Phytoplankton and cyanobacteria communities of reservoirs appear similar to natural lakes—indicating rapid naturalization of reservoirs

Alberta

## Summary cont'd

- Differing drivers for toxin vs. chlorophyll-b producers
  - Toxin under warm, low elevation (solar radiation), and high pH
  - Chlorophyll-b under high nitrogen and smaller logging footprints

- Phytoplankton trait-environment associations offer mechanistic insights
  - Natural/anthropogenic associations generate hypotheses



## Acknowledgements

- Sample collection: The Alberta Lake Management Society & EMSD Field Staff
- Data validation: Jenny Pham, AEP
- Data Preparation: Rabekah Adams & Alex Lake, EMSD
- Watershed Data/Co-authors: Faye Wyatt and Colleen Mortimer, GIS Specialists, EMSD
- Co-author: Rolf Vinebrooke, U of A



#### Part 1:

#### "Multiscale drivers of phytoplankton communities in north-temperate lakes"

Charlie J. G. Loewen, Faye R. Wyatt, Colleen A. Mortimer, Rolf D. Vinebrooke, and Ron W. Zurawell

Submitted to: Ecological Applications

#### Part 2:

"Seasonal trait-environment associations of phytoplankton communities in north-temperate lakes"

Charlie J. G. Loewen, Rolf D. Vinebrooke, and Ron W. Zurawell In prep

